Skip to main content
Log in

Symmetries of center singularities of plane vector fields

  • Published:
Nonlinear Oscillations

Let \( {D^2} \subset {\mathbb{R}^2} \) be a closed unit 2-disk centered at the origin \( O \in {\mathbb{R}^2} \) and let F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus, topologically O is a “center” singularity. Let \( \theta :D2\backslash \left\{ O \right\} \to \left( {0, + \infty } \right) \) be the function associating with each zO its period with respect to F. In general, such a function cannot be even continuously defined at O. Let also \( {\mathcal{D}^{+} }(F) \) be the group of diffeomorphisms of D 2 that preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D 2 if and only if the 1-jet of F at O is a “rotation,” i.e., \( {j^1}F(O) = - y\frac{\partial }{{\partial x}} + x\frac{\partial }{{\partial y}} \). Then \( {\mathcal{D}^{+} }(F) \) is homotopy equivalent to a circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chavarriga, H. Giacomini, J. Giné, and J. Llibre, “On the integrability of two-dimensional flows,” J. Different. Equat., 157, 163–182 (1999).

    Article�� MATH  Google Scholar 

  2. S. Maksymenko, “Smooth shifts along trajectories of flows,” Topol. Appl., 130, 83–204 (2003).

    MathSciNet  Google Scholar 

  3. S. Maksymenko, Local Inverses of Shift Maps along Orbits of Flows, arXiv:0806.1502.

  4. S. Maksymenko, “Connected components of partition preserving diffeomorphisms,” Meth. Funct. Anal. Geom., 15, No. 3, 264–279 (2009).

    MATH  MathSciNet  Google Scholar 

  5. S. Maksymenko, “Reparametrizations of vector fields and their shift maps,” Proc. Inst. Math. NAS Ukraine, 6, No. 2, 489–498 (2009).

    MATH  MathSciNet  Google Scholar 

  6. F. Takens, “Normal forms for certain singularities of vector fields,” Ann. Inst. Fourier, 23, No. 2, 163–195 (1973).

    MATH  MathSciNet  Google Scholar 

  7. G. W. Schwarz, “Smooth functions invariant under the action of a compact Lie group,” Topology, 14, 63–68 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  8. W. C. Huffman, “Polynomial invariants of finite linear groups of degree two,” Can. J. Math., 32, 317–330 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces,” Ann. Global Anal. Geom., 29, No. 3, 241–285 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. I. Arnol’d and Yu. S. Ilyashenko, “Ordinary differential equations,” in: VINITI Series in Contemporary Problems in Mathematics. Fundamental Trends [in Russian], Vol. 1, VINITI, Moscow (1985), pp. 7–140.

  11. H. Poincaré, On Curves Defined by Differential Equations [Russian translation], Moscow (1947).

  12. A. M. Lyapunov, A General Problem of Stability of Motion [in Russian], Gostekhteoretizdat, Moscow (1950).

    Google Scholar 

  13. R. Moussu, “Symétrie et forme normale des centres et foyers dégénérés,” Ergodic Theory Dynam. Syst., 2, No. 2, 241–251 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  14. K. S. Sibirsky, Algebraic Invariants of Differential Equations and Matrices [in Russian], Kishinev (1976).

  15. K. S. Sibirsky, Introduction to the Algebraic Invariants Theory of Differential Equations [in Russian], Kishinev (1982).

  16. S. I. Maksymenko, “Symmetries of degenerate center singularities of plane vector fields,” Nonlin. Oscillations, 12, No. 4, 507–526 (2009).

    MathSciNet  Google Scholar 

  17. M. Hirsch, Differentiable Topology, Springer (1976).

  18. J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer (1982).

  19. O. Perron, “Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen,” Math. Z., 29, 129–160 (1928).

    Article  MATH  MathSciNet  Google Scholar 

  20. O. Perron, “Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen,” J. Reine Angew. Math., 161, 41–64 (1929).

    MATH  Google Scholar 

  21. O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen,” Math. Z., 32, 703–728 (1930).

    Article  MATH  MathSciNet  Google Scholar 

  22. M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Springer (1977).

  23. O. Lykova, “On the question of stability of solutions of systems of nonlinear differential equations,” Ukr. Mat. Zh., 11, No. 2, 251–255 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Kelley, “The stable, center-stable, center, center-unstable, unstable manifolds,” J. Different. Equat., 3, 546–570 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Carr, Applications of Centre Manifold Theory, Springer (1981).

  26. S. Maksymenko, “Hamiltonian vector fields of homogeneous polynomials on the plane, topological problems and relative questions,” Proc. Inst. Math. NAS Ukr., 3, No. 3, 269–308 (2006).

    MATH  MathSciNet  Google Scholar 

  27. G. R. Belitsky, “Smooth equivalence of germs of vector fields with a single zero eigenvalue or a pair of purely imaginary eigenvalues,” Funct. Anal. Appl., 20, No. 4, 1–8 (1985).

    Google Scholar 

  28. M. A. Mostow and S. Shnider, “Joint continuity of division of smooth functions. I. Uniform Lojasiewicz estimates,” Trans. Amer. Math. Soc., 292, No. 2, 573–583 (1985).

    MATH  MathSciNet  Google Scholar 

  29. N. M. dos Santos, “Parameter rigid actions of the Heisenberg groups,” Ergodic Theory Dynam. Syst., 27, No. 6, 1719–1735 (2007).

    MATH  Google Scholar 

  30. S. Maksymenko, “∞-Jets of diffeomorphisms preserving orbits of vector fields,” Centr. Eur. J. Math., 7, No. 2, 272–298 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Maksymenko.

Additional information

Published in Neliniini Kolyvannya, Vol. 13, No. 2, pp. 177–205, April–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksymenko, S.I. Symmetries of center singularities of plane vector fields. Nonlinear Oscill 13, 196–227 (2010). https://doi.org/10.1007/s11072-010-0110-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11072-010-0110-4

Keywords

Navigation