×

Asymptotically exact a posteriori local discontinuous Galerkin error estimates for the one-dimensional second-order wave equation. (English) Zbl 1332.65134

The author is concerned with an implicit residual based a posteriori spatial error estimate for the semidiscrete local discontinuous Galerkin method related to the wave equation \[ u_{tt}-u_{xx}=f(x,t),\quad (x,t)\in [-1,1]\times [0,T]. \] The author obtains that the error estimates for the solution and its spatial derivative is of order \(O(h^{p+3/2})\), when \(p\) \(4\)-degree piecewise polynomials are used. The author also shows that the global effectivity indices for both the solution and its derivative in the \(L^2\) norm converge at the rate \(O(h^{1/2})\). Several numerical experiments are included in order to support the theoretical findings.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] W. H.Reed, T. R.Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA‐UR‐73‐479, Los Alamos Scientific Laboratory, Los Alamos, 1973.
[2] P.Lesaint, P.Raviart, On a finite element method for solving the neutron transport equations, C.deBoor (ed.), editor, Mathematical aspects of finite elements in partial differential equations, Academic Press, New York, 1974. · Zbl 0324.00023
[3] S.Adjerid, K. D.Devine, J. E.Flaherty, L.Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Comput Methods Appl Mechan Eng191 (2002), 1097-1112. · Zbl 0998.65098
[4] K.Bottcher, R.Rannacher, Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method, Technical Report, IWR, Institute of Applied Mathematics, University of Heidelberg, Germany, 1996.
[5] C.Johnson, Error estimates and adaptive time‐step control for a class of one‐step methods for stiff ordinary differential equations, SIAM J Numer Anal25 (1988), 908-926. · Zbl 0661.65076
[6] R.Biswas, K.Devine, J. E.Flaherty, Parallel adaptive finite element methods for conservation laws, Appl Numer Math14 (1994), 255-284. · Zbl 0826.65084
[7] B.Cockburn, S. Y.Lin, C. W.Shu, TVB Runge‐Kutta local projection discontinuous Galerkin methods of scalar conservation laws III: One dimensional systems, J Comput Phys84 (1989), 90-113. · Zbl 0677.65093
[8] B.Cockburn, C. W.Shu, TVB Runge‐Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: General framework, Math Comput52 (1989), 411-435. · Zbl 0662.65083
[9] T.Peterson, A note on the convergence of the discontinuous Galerkin method for scalar hyperbolic equation, SIAM J Numer Anal28 (1991), 133-140. · Zbl 0729.65085
[10] K. D.Devine, J. E.Flaherty, Parallel adaptive hp‐refinement techniques for conservation laws, Comput Methods Appl Mech Eng20 (1996), 367-386. · Zbl 0860.65095
[11] J. E.Flaherty, R.Loy, M. S.Shephard, B. K.Szymanski, J. D.Teresco, L. H.Ziantz, Adaptive local refinement with octree load‐balancing for the parallel solution of three‐dimensional conservation laws, J Parallel Distrib Comput47 (1997), 139-152.
[12] Y.Cheng, C.‐W.Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection‐diffusion equations in one space dimension, SIAM J Numer Anal47 (2010), 4044-4072. · Zbl 1208.65137
[13] Y.Yang, C.‐W.Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J Numer Anal50 (2012), 3110-3133. · Zbl 1276.65055
[14] X.Meng, C.‐W.Shu, Q.Zhang, B.Wu, Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension, SIAM J Numer Anal50 (2012), 2336-2356. · Zbl 1267.65115
[15] S.Adjerid, M.Baccouch, The discontinuous Galerkin method for two‐dimensional hyperbolic problems. Part I: Superconvergence error analysis, J Sci Comput33 (2007), 75-113. · Zbl 1129.65057
[16] S.Adjerid, M.Baccouch, The discontinuous Galerkin method for two‐dimensional hyperbolic problems. Part II: A posteriori error estimation, J Sci Comput38 (2009), 15-49. · Zbl 1203.65241
[17] M.Baccouch, S.Adjerid, Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes, Comput Methods Appl Mech Eng200 (2010), 162-177. · Zbl 1225.76190
[18] S.Adjerid, M.Baccouch, Adaptivity and error estimation for discontinuous Galerkin methods, X.Feng (ed.), O.Karakashian (ed.), Y.Xing (ed.), editors, Recent developments in discontinuous Galerkin finite element methods for partial differential equations, vol. 157 of the IMA volumes in mathematics and its applications, Springer International Publishing, Switzerland, 2014, pp. 63-96. · Zbl 1282.65109
[19] F.Bassi, S.Rebay, A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier‐Stokes equations, J Comput Phys131 (1997), 267-279. · Zbl 0871.76040
[20] C. E.Baumann, J. T.Oden, A discontinuous hp finite element method for convection‐diffusion problems, Comput Methods Appl Mech Eng175 (1999), 311-341. · Zbl 0924.76051
[21] M. F.Wheeler, An elliptic collocation‐finite element method with interior penalties, SIAM J Numer Anal15 (1978), 152-161. · Zbl 0384.65058
[22] B.Cockburn, C. W.Shu, The local discontinuous Galerkin method for time‐dependent convection‐diffusion systems, SIAM J Numer Anal35 (1998), 2440-2463. · Zbl 0927.65118
[23] X.Meng, C.‐W.Shu, B.Wu, Superconvergence of the local discontinuous Galerkin method for linear fourth order time dependent problems in one space dimension, IMA J Numer Anal32 (2012), 1294-1328. · Zbl 1258.65083
[24] M.Baccouch, The local discontinuous Galerkin method for the fourth‐order Euler‐Bernoulli partial differential equation in one space dimension. Part I: Superconvergence error analysis, J Sci Comput59 (2014), 795-840. · Zbl 1297.74112
[25] M.Baccouch, The local discontinuous Galerkin method for the fourth‐order Euler‐Bernoulli partial differential equation in one space dimension. Part II: A posteriori error estimation, J Sci Comput60 (2014), 1-34. · Zbl 1462.65137
[26] B.Cockburn, G. E.Karniadakis, C. W.Shu, Discontinuous Galerkin methods theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin, 2000.
[27] C.‐W.Shu, Discontinuous Galerkin method for time‐dependent problems: Survey and recent developments, X.Feng (ed.), O.Karakashian (ed.), Y.Xing (ed.), editors, Recent developments in discontinuous Galerkin finite element methods for partial differential equations, vol. 157 of The IMA Volumes in Mathematics and its Applications, Springer International Publishing, Switzerland, 2014, pp. 25-62. · Zbl 1282.65122
[28] M.Ainsworth, J. T.Oden, A posteriori error estimation in finite element analysis, John Wiley, New York, 2000. · Zbl 1008.65076
[29] M.Vohralik, M. F.Wheeler, A posteriori error estimates, stopping criteria, and adaptivity for two‐phase flows, Comput Geosci17 (2013), 789-812. · Zbl 1393.76069
[30] K.‐Y.Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl Math Comput218 (2012), 11820-11831. · Zbl 1281.65142
[31] A.Agouzal, F.Oudin, A posteriori error estimator for finite volume methods, Appl Math Comput110 (2000), 239-250. · Zbl 1023.65116
[32] L.Mua, R.Jari, A recovery‐based error estimate for nonconforming finite volume methods of interface problems, Appl Math Comput220 (2013), 63-74. · Zbl 1329.65254
[33] B.Cockburn, A simple introduction to error estimation for nonlinear hyperbolic conservation laws, Proceedings of the 1998 EPSRC Summer School in Numerical Analysis, SSCM, volume 26 of the Graduate Student’s Guide for Numerical Analysis, pages 1‐46, Springer, Berlin, 1999.
[34] B.Cockburn, P. A.Gremaud, Error estimates for finite element methods for nonlinear conservation laws, SIAM J Numer Anal33 (1996), 522-554. · Zbl 0861.65077
[35] R.Hartmann, P.Houston, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservations laws, SIAM J Sci Comput24 (2002), 979-1004. · Zbl 1034.65081
[36] C.Johnson, A.Szepessy, Adaptive finite element methods for conservation laws, Commun Pure Appl Math48 (1995), 199-243. · Zbl 0826.65088
[37] P.Houston, J.Mackenzie, E.Süli, G.Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems, Numer Math82 (1999), 433-470. · Zbl 0935.65096
[38] P.Houston, D.Schötzau, T.Wihler, Energy norm a posteriori error estimation of hp‐adaptive discontinuous Galerkin methods for elliptic problems, Math Models Methods Appl Sci17 (2007), 33-62. · Zbl 1116.65115
[39] B.Rivière, M.Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput Appl Math46 (2003) 143-163. · Zbl 1059.65098
[40] S.Adjerid, M.Baccouch, Asymptotically exact a posteriori error estimates for a one‐dimensional linear hyperbolic problem, Appl Numer Math60 (2010), 903-914. · Zbl 1196.65152
[41] M.Baccouch, Global convergence of a posteriori error estimates for a discontinuous Galerkin method for one‐dimensional linear hyperbolic problems, Int J Numer Anal Model11 (2014), 172-193. · Zbl 1310.65118
[42] M.Baccouch, A posteriori error estimates for a discontinuous Galerkin method applied to one‐dimensional nonlinear scalar conservation laws, Appl Numer Math84 (2014), 1-21. · Zbl 1293.65120
[43] S.Adjerid, T. C.Massey, A posteriori discontinuous finite element error estimation for two‐dimensional hyperbolic problems, Comput Methods Appl Mech Eng191 (2002), 5877-5897. · Zbl 1062.65091
[44] S.Adjerid, T. C.Massey, Superconvergence of discontinuous finite element solutions for nonlinear hyperbolic problems, Comput Methods Appl Mech Eng195 (2006), 3331-3346. · Zbl 1124.65086
[45] L.Krivodonova, J. E.Flaherty., Error estimation for discontinuous Galerkin solutions of two‐dimensional hyperbolic problems, Adv Comput Math19 (2003), 57-71. · Zbl 1020.65062
[46] S.Adjerid, A.Klauser, Superconvergence of discontinuous finite element solutions for transient convection‐diffusion problems, J Sci Comput22 (2005), 5-24. · Zbl 1065.76131
[47] M.Baccouch, Asymptotically exact a posteriori LDG error estimates for one‐dimensional transient convection‐diffusion problems, Appl Math Comput226 (2014), 455-483. · Zbl 1354.65186
[48] M.Baccouch, Superconvergence and a posteriori error estimates for the LDG method for convection‐diffusion problems in one space dimension, Comput Math Appl67 (2014), 1130-1153. · Zbl 1350.65097
[49] M.Baccouch, Asymptotically exact local discontinuous Galerkin error estimates for the linearized Korteweg‐de Vries equation in one space dimension, Int J Numer Anal Model12 (2014), 165-195. · Zbl 1329.65218
[50] S.Adjerid, M.Baccouch, A superconvergent local discontinuous Galerkin method for elliptic problems, J Sci Comput52 (2012), 113-152. · Zbl 1255.65207
[51] M.Baccouch, S.Adjerid, A posteriori local discontinuous Galerkin error estimation for two‐dimensional convection‐diffusion problems, J Sci Comput, to appear, doi 10.1007/s10915-014-9861-x. · Zbl 1326.65146
[52] M.Baccouch, A superconvergent local discontinuous Galerkin method for the second‐order wave equation on cartesian grids, Comput Math Appli68 (2014), 1250-1278. · Zbl 1367.65140
[53] M.Baccouch, A local discontinuous Galerkin method for the second‐order wave equation, Comput Methods Appl Mech Eng209-212 (2012), 129-143. · Zbl 1243.65119
[54] M.Baccouch, Superconvergence of the local discontinuous Galerkin method applied to the one‐dimensional second‐order wave equation, Numer Methods Partial Differential Equations 30 (2014), 862-901. · Zbl 1301.65098
[55] M.Abramowitz, I. A.Stegun, Handbook of mathematical functions, Dover, New York, 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.