×

The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli partial differential equation in one space dimension. I: Superconvergence error analysis. (English) Zbl 1297.74112

Summary: In this paper we develop and analyze a new superconvergent local discontinuous Galerkin (LDG) method for approximating solutions to the fourth-order Euler-Bernoulli beam equation in one space dimension. We prove the \(L^2\) stability of the scheme and several optimal \(L^2\) error estimates for the solution and for the three auxiliary variables that approximate derivatives of different orders. Our numerical experiments demonstrate optimal rates of convergence. We also prove superconvergence results towards particular projections of the exact solutions. More precisely, we prove that the LDG solution and its spatial derivatives (up to third order) are \(\mathcal O (h^{k+3/2})\) super close to particular projections of the exact solutions for \(k\)th-degree polynomial spaces while computational results show higher \(\mathcal O (h^{k+2})\) convergence rate. Our proofs are valid for arbitrary regular meshes and for \(P^k\) polynomials with \(k\geq 1\), and for periodic, Dirichlet, and mixed boundary conditions. These superconvergence results will be used to construct asymptotically exact a posteriori error estimates by solving a local steady problem on each element. This will be reported in Part II of this work, where we will prove that the a posteriori LDG error estimates for the solution and its derivatives converge to the true errors in the \(L^2\)-norm under mesh refinement.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q74 PDEs in connection with mechanics of deformable solids
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. I: superconvergence error analysis. J. Sci. Comput. 33, 75-113 (2007) · Zbl 1129.65057 · doi:10.1007/s10915-007-9144-x
[2] Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. II: a posteriori error estimation. J. Sci. Comput. 38, 15-49 (2009) · Zbl 1203.65241 · doi:10.1007/s10915-008-9222-8
[3] Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903-914 (2010) · Zbl 1196.65152 · doi:10.1016/j.apnum.2010.04.014
[4] Adjerid, S., Baccouch, M.: A posteriori local discontinuous Galerkin error estimation for two-dimensional convection-diffusion problems (submitted) (2012) · Zbl 1326.65146
[5] Adjerid, S., Baccouch, M.: A superconvergent local discontinuous Galerkin method for elliptic problems. J. Sci. Comput. 52, 113-152 (2012) · Zbl 1255.65207 · doi:10.1007/s10915-011-9537-8
[6] Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097-1112 (2002) · Zbl 0998.65098 · doi:10.1016/S0045-7825(01)00318-8
[7] Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems. J. Sci. comput. 22, 5-24 (2005) · Zbl 1065.76131 · doi:10.1007/s10915-004-4133-9
[8] Adjerid, S., Massey, T.C.: A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 5877-5897 (2002) · Zbl 1062.65091 · doi:10.1016/S0045-7825(02)00502-9
[9] Adjerid, S., Temimi, H.: A discontinuous Galerkin method for higher-order ordinary differential equations. Comput. Methods Appl. Mech. Eng. 197, 202-218 (2007) · Zbl 1169.65328 · doi:10.1016/j.cma.2007.07.015
[10] Agarwal, R.: On the fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2, 91-110 (1989) · Zbl 0715.34032
[11] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[12] Attili, B., Lesnic, D.: An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems. Appl. Math. Comput. 182, 1247-1254 (2006) · Zbl 1107.65070 · doi:10.1016/j.amc.2006.05.011
[13] Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209-212, 129-143 (2012) · Zbl 1243.65119 · doi:10.1016/j.cma.2011.10.012
[14] Baccouch, M.: The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli partial differential equation in one space dimension. Part II: A posteriori error estimation. J. Sci. Comput. (2013). doi:10.1007/s10915-013-9783-z · Zbl 1462.65137
[15] Baccouch, M., Adjerid, S.: Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes. Comput. Methods Appl. Mech. Eng. 200, 162-177 (2010) · Zbl 1225.76190 · doi:10.1016/j.cma.2010.08.002
[16] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267-279 (1997) · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[17] Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311-341 (1999) · Zbl 0924.76051 · doi:10.1016/S0045-7825(98)00359-4
[18] Bey, K.S., Oden, J.T.: hp-version discontinuous Galerkin method for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133, 259-286 (1996) · Zbl 0894.76036 · doi:10.1016/0045-7825(95)00944-2
[19] Bey, K.S., Oden, J.T., Patra, A.: hp-version discontinuous Galerkin method for hyperbolic conservation laws: a parallel strategy. Int. J. Numer. Methods Eng. 38, 3889-3908 (1995) · Zbl 0855.65106 · doi:10.1002/nme.1620382209
[20] Bey, K.S., Oden, J.T., Patra, A.: A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Appl. Numer. Math. 20, 321-386 (1996) · Zbl 0860.65094 · doi:10.1016/0168-9274(95)00101-8
[21] Biswas, R., Devine, K., Flaherty, J.E.: Parallel adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255-284 (1994) · Zbl 0826.65084 · doi:10.1016/0168-9274(94)90029-9
[22] Bottcher, K., Rannacher, R.: Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method. Technical report, University of Heidelberg (1996) · Zbl 0826.65084
[23] Castillo, P.: A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput. Methods Appl. Mech. Eng. 192, 4675-4685 (2003) · Zbl 1040.65072 · doi:10.1016/S0045-7825(03)00445-6
[24] Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676-1706 (2000) · Zbl 0987.65111 · doi:10.1137/S0036142900371003
[25] Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comput. 76, 67-96 (2007) · Zbl 1109.65078 · doi:10.1090/S0025-5718-06-01895-3
[26] Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044-4072 (2010) · Zbl 1208.65137 · doi:10.1137/090747701
[27] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978) · Zbl 0383.65058
[28] Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264-285 (2001) · Zbl 1041.65080 · doi:10.1137/S0036142900371544
[29] Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000) · Zbl 0935.00043
[30] Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin methods of scalar conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[31] Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: general framework. Math. Comput. 52, 411-435 (1989) · Zbl 0662.65083
[32] Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[33] Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equation. Math. Comput. 154, 455-473 (1981) · Zbl 0469.65053 · doi:10.1090/S0025-5718-1981-0606506-0
[34] Devine, K.D., Flaherty, J.E.: Parallel adaptive hp-refinement techniques for conservation laws. Comput. Methods Appl. Mech. Eng. 20, 367-386 (1996) · Zbl 0860.65095
[35] Flaherty, J.E., Loy, R., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139-152 · Zbl 0937.65107
[36] Greenberg, L., Marletta, M.: Oscillation theory and numerical solution of fourth-order Sturm-Liouville problem. IMA J. Numer. Anal. 15, 319-356 (1995) · Zbl 0832.65087 · doi:10.1093/imanum/15.3.319
[37] Gupta, C.: Existence and uniqueness theorems for a bending of an elastic beam equation at resonance. J. Math. Anal. Appl. 135, 208-225 (1988) · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[38] Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908-926 (1988) · Zbl 0661.65076 · doi:10.1137/0725051
[39] Lesaint, P.; Raviart, P.; Boor, C. (ed.), On a finite element method for solving the neutron transport equations (1974), New York
[40] Liu, L., Zhang, X., Wu, Y.: Positive solutions of fourth-order nonlinear singular Sturm-Liouville eigenvalue problems. J. Math. Anal. Appl. 326, 1212-1224 (2007) · Zbl 1113.34022 · doi:10.1016/j.jmaa.2006.03.029
[41] Meng, X., Shu, C.-W., Wu, B.: Superconvergence of the local discontinuous Galerkin method for linear fourth order time dependent problems in one space dimension. IMA J. Numer. Anal. 32, 1294-1328 (2012) · Zbl 1258.65083 · doi:10.1093/imanum/drr047
[42] Mozolevski, I., Süli, E.: A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, 1-12 (2003) · Zbl 1048.65100 · doi:10.2478/cmam-2003-0037
[43] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973) · Zbl 1243.65119
[44] Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152-161 (1978) · Zbl 0384.65058 · doi:10.1137/0715010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.