×

Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. (English) Zbl 1331.93091

Summary: In this article, we consider the robust reliable sample-data control problem for an offshore steel jacket platform with input time-varying delay and possible occurrence of actuator faults subject to nonlinear self-exited hydrodynamic forces. The main objective of this work is to design a state feedback reliable sample-data controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed-loop system is robustly exponentially stable. By constructing an appropriate Lyapunov-Krasovskii functional and using linear matrix inequality (LMI) approach, a new set of sufficient condition is derived in terms of LMIs for the existence of robust reliable sample-data control law. In particular, the uncertainty under consideration in system parameters includes linear fractional norm-bounded uncertainty. Further, Schur complement and Jenson’s integral inequality are used to substantially simplify the derivation in the main results. More precisely, the controller gain matrix for the nonlinear offshore steel jacket platform can be achieved by solving the LMIs, which can be easily facilitated by using some standard numerical packages. Finally, a numerical example with simulation result is provided to illustrate the applicability and effectiveness of the proposed reliable sampled-data control scheme.

MSC:

93C10 Nonlinear systems in control theory
93D09 Robust stability
34K35 Control problems for functional-differential equations
93B52 Feedback control
37M05 Simulation of dynamical systems
37N35 Dynamical systems in control
Full Text: DOI

References:

[1] Golafshani, A.A., Gholizad, A.: Friction damper for vibration control in offshore steel jacket platforms. J. Constr. Steel Res. 65, 180-187 (2009) · doi:10.1016/j.jcsr.2008.07.008
[2] Terro, M.J., Mahmoud, M.S., Abdel-Rohman, M.: Multi-loop feedback control of offshore steel jacket platforms. Comput. Struct. 70, 185-202 (1999) · Zbl 0941.74519 · doi:10.1016/S0045-7949(98)00152-7
[3] Zribi, M., Almutairi, N., Abdel-Rohman, M., Terro, M.: Nonlinear and robust control schemes for offshore steel jacket platforms. Nonlinear Dyn. 35, 61-80 (2004) · Zbl 1041.70503 · doi:10.1023/B:NODY.0000017499.49855.14
[4] Zhang, B.L., Han, Q.L., Zhang, X.M., Yu, X.: Integral sliding mode control for offshore steel jacket platforms. J. Sound Vib. 331, 3271-3285 (2012a) · doi:10.1016/j.jsv.2012.03.006
[5] Zhang, B.L., Hu, Y.H., Tang, G.Y.: Stabilization control for offshore steel jacket platforms with actuator time-delays. Nonlinear Dyn. 70, 1593-1603 (2012b) · Zbl 1268.93125 · doi:10.1007/s11071-012-0559-z
[6] Zhang, B.L., Ma, L., Han, Q.L.: Sliding mode \[H_{\infty }H\]∞ control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. 14, 163-178 (2013) · Zbl 1254.93062 · doi:10.1016/j.nonrwa.2012.05.010
[7] Balasubramaniam, P., Lakshmanan, S., Jeeva Sathya Theesar, S.: State estimation for Markovian jumping recurrent neural networks with interval time-varying delays. Nonlinear Dyn. 60, 661-675 (2010) · Zbl 1194.62109 · doi:10.1007/s11071-009-9623-8
[8] Balasubramaniam, P., Revathi, V.M., Park, J.\[H.: {{\cal{L}}}_{{2}}-{{\cal{L}}}_{\infty }\] L2-L∞ filtering for neutral Markovian switching system with mode-dependent time-varying delays and partially unknown transition probabilities. Appl. Math. Comput. 219, 9524-9542 (2013) · Zbl 1287.93089 · doi:10.1016/j.amc.2013.03.037
[9] Lakshmanan, S., Park, J.H., Rakkiyappan, R., Jung, H.Y.: State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach. Nonlinear Dyn. 73, 509-520 (2013) · Zbl 1281.92008 · doi:10.1007/s11071-013-0805-z
[10] Lakshmanan, S., Park, J.H., Ji, D.H., Jung, H.Y., Nagamani, G.: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn. 70, 1421-1434 (2012) · Zbl 1268.92012 · doi:10.1007/s11071-012-0544-6
[11] Phat, V.N., Ha, Q.\[P.: H_\infty H\]∞ control and exponential stability of nonlinear nonautonomous systems with time-varying delay. J. Optim. Theory Appl. 142, 603-618 (2009) · Zbl 1178.93047 · doi:10.1007/s10957-009-9512-9
[12] Sakthivel, R., Mathiyalagan, K., Anthoni, S.M.: Robust stability and control for uncertain neutral time delay systems. Int. J. Control 85, 373-383 (2012) · Zbl 1256.93081 · doi:10.1080/00207179.2011.653832
[13] Vadivel, P., Sakthivel, R., Mathiyalagan, K., Thangaraj, P.: Robust stabilisation of non-linear uncertain Takagi-Sugeno fuzzy systems by \[H_{\infty }H\]∞ control. IET Control Theory Appl. 6, 2556-2566 (2012) · doi:10.1049/iet-cta.2012.0626
[14] Wu, L., Gao, H., Wang, C.: Quasi-sliding mode control of differential linear repetitive processes with unknown input disturbance. IEEE Trans. Ind. Electron. 58, 3059-3068 (2011) · doi:10.1109/TIE.2010.2072891
[15] Yang, X., Gao, H., Shi, P., Duan, G.: Robust \[H_\infty H\]∞ control for a class of uncertain mechanical systems. Int. J. Control 83, 1303-1324 (2010) · Zbl 1200.93036 · doi:10.1080/00207170903267047
[16] Zhou, S., Zheng, W.X.: Robust \[H_\infty H\]∞ control of delayed singular systems with linear fractional parametric uncertainties. J. Franklin Inst. 346, 147-158 (2009) · Zbl 1160.93330 · doi:10.1016/j.jfranklin.2008.08.002
[17] Zhao, Q., Jiang, J.: Reliable state feedback control system design against actuator failures. Automatica 34, 1267-1272 (1998) · Zbl 0938.93523 · doi:10.1016/S0005-1098(98)00072-7
[18] Du, D.: Reliable \[H_\infty H\]∞ control for Takagi-Sugeno fuzzy systems with intermittent measurements. Nonlinear Anal. 6, 930-941 (2012) · Zbl 1269.93053
[19] Gu, Z., Liu, J., Peng, C., Tian, E.: Reliable control for interval time-varying delay systems subjected to actuator saturation and stochastic failure. Optim. Control Appl. Methods 33, 739-750 (2012) · Zbl 1276.93071 · doi:10.1002/oca.1023
[20] Liu, Y., Wang, Z., Wang, W.: Robust reliable control for discrete-time-delay systems with stochastic nonlinearities and multiplicative noises. Optim. Control Appl. Methods 32, 285-297 (2011) · Zbl 1217.93176 · doi:10.1002/oca.938
[21] Wu, Z.G., Shi, P., Su, H., Chu, J.: Reliable \[H_\infty H\]∞ control for discrete-time fuzzy systems with infinite-distributed delay. IEEE Trans. Fuzzy Syst. 20, 22-31 (2012) · doi:10.1109/TFUZZ.2011.2162850
[22] Gao, Z., Jiang, B., Qi, R., Xu, Y.: Robust reliable control for a near space vehicle with parametric uncertainties and actuator faults. Int. J. Syst. Sci. 42, 2113-2124 (2011) · Zbl 1260.93099 · doi:10.1080/00207721003731611
[23] Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilisation of linear systems: an input delay approach. Automatica 40, 1441-1446 (2004) · Zbl 1072.93018 · doi:10.1016/j.automatica.2004.03.003
[24] Wu, Z., Shi, P., Su, H., Chu, J.: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans. Cybern. 43, 1796-1806 (2013b) · doi:10.1109/TSMCB.2012.2230441
[25] Lam, H.K., Leung, H.F.: Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach. IEEE Trans. Syst. Man Cybern. Part b 37, 617-629 (2007) · doi:10.1109/TSMCB.2006.889629
[26] Wu, J., Karimi, H.R., Shi, P.: Network-based \[H_{\infty }H\]∞ output feedback control for uncertain stochastic systems. Info. Sci. 232, 397-410 (2013) · Zbl 1293.93276 · doi:10.1016/j.ins.2012.11.020
[27] Lam, H.K.: Output-feedback sampled-data polynomial controller for nonlinear systems. Automatica 47, 2457-2461 (2011) · Zbl 1228.93077 · doi:10.1016/j.automatica.2011.08.009
[28] Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data synchronization of chaotic Lur’e systems with time delays. IEEE Trans. Neural Netw. Learn. Syst. 24, 410-421 (2013d) · doi:10.1109/TNNLS.2012.2236356
[29] Chandrasekar, A., Rakkiyappan, R., Rihan, F.A., Lakshmanan, S.: Exponential synchronization of Markovian jumping neural networks with partly unknown transition probabilities via stochastic sampled-data control. Neurocomputing 10, 385-398 (2014) · Zbl 1228.93077
[30] Liu, Q.L., Wang, R., Wu, D.: Stability analysis for sampled-data systems based on multiple Lyapunov functional method. Int. J. Innov. Comput. Info. Control 8, 6345-6355 (2012)
[31] Weng, Y., Chao, Z.: Robust sampled-data \[H_\infty H\]∞ output feedback control of active suspension system. Int. J. Innov. Comput. Info. Control 10, 281-292 (2014)
[32] Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy model. IEEE Trans. Fuzzy Syst. (2013a). doi:10.1109/tfuzz.2013.2249520
[33] Wu, Z., Shi, P., Su, H., Chu, J.: Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 24, 1177-1187 (2013c) · doi:10.1109/TNNLS.2013.2253122
[34] Zhao, D., Li, C., Ren, J.: Fuzzy speed control and stability analysis of a networked induction motor system with time delays and packet dropouts. Nonlinear Anal. Real World Appl. 12, 273-287 (2011) · Zbl 1203.93116 · doi:10.1016/j.nonrwa.2010.06.014
[35] Boyd, S., Ghoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[36] Balasubramaniam, P., Lakshmanan, S., Rakkiyappan, R.: Delay-interval dependent robust stability criteria for stochastic neural networks with linear fractional uncertainties. Neurocomputing 72, 3675-3682 (2009) · doi:10.1016/j.neucom.2009.06.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.