×

Output-feedback sampled-data polynomial controller for nonlinear systems. (English) Zbl 1228.93077

Summary: This paper presents the stability analysis and control synthesis for a sampled-data control system which consists of a nonlinear plant and an output-feedback sampled-data polynomial controller connected in a closed loop. The output-feedback sampled-data polynomial controller, which can be implemented by a microcontroller or a digital computer, is proposed to stabilize the nonlinear plant. Based on the Lyapunov stability theory, stability conditions in terms of sum of squares are obtained to guarantee the stability and to aid the design of a polynomial controller. A simulation example is given to demonstrate the effectiveness of the proposed control approach.

MSC:

93C57 Sampled-data control/observation systems
93B52 Feedback control

Software:

Sostools
Full Text: DOI

References:

[1] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM: SIAM Philadelphia, PA · Zbl 0816.93004
[2] Cao, Y.; Sun, Y.; Cheng, C., Delay-dependent robust stabilization of uncertain systems with multiple state delays, IEEE Transactions on Automatic Control, 43, 11, 1608-1612 (1998) · Zbl 0973.93043
[3] Chen, T.; Francis, B. A., Input-output stability of sampled-data systems, IEEE Transactions on Automatic Control, 36, 1, 50-58 (1991) · Zbl 0723.93059
[4] Fridman, E.; Seuret, A.; Richard, J. P., Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, 40, 8, 1441-1446 (2004) · Zbl 1072.93018
[5] Grüne, L.; Worthmann, K.; Nešić, D., Continuous-time controller redesign for digital implementation: a trajectory based approach, Automatica, 44, 1, 225-232 (2008) · Zbl 1138.93350
[6] Han, Q. L., A new delay-dependent absolute stability criterion for a class of nonlinear neutral systems, Automatica, 44, 1, 272-277 (2008) · Zbl 1138.93039
[7] He, Y.; Wang, Q. G.; Xie, L.; Lin, C., Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Transactions on Automatic Control, 52, 2, 293-299 (2007) · Zbl 1366.34097
[8] He, Y.; Wu, M., Absolute stability for multiple delay general Lur’e control systems with multiple nonlinearities, Journal of Computational and Applied Mathematics, 159, 2, 241-248 (2003) · Zbl 1032.93062
[9] He, Y.; Wu, M.; She, J. H.; Liu, G. P., Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE Transactions on Automatic Control, 49, 5, 828-832 (2004) · Zbl 1365.93368
[10] Hu, L. S.; Bai, T.; Shi, P.; Wu, Z., Sampled-data control of networked linear control systems, Automatica, 43, 5, 903-911 (2007) · Zbl 1117.93044
[11] Khalil, H. K., Nonlinear systems (2002), Prentice Hall · Zbl 0626.34052
[12] Laila, D. A.; Nešić, D.; Teel, A. R., Open and closed loop dissipation inequalities under sampling and controller emulation, European Journal of Control, 8, 2, 109-125 (2002) · Zbl 1293.93388
[13] Laila, D. S.; Astolfi, A., Input-to-state stability for discrete-time time-varying systems with applications to robust stabilization of systems in power form, Automatica, 41, 11, 1891-1903 (2005) · Zbl 1125.93475
[14] Laila, D. S.; Nešić, D., Changing supply rates for inputoutput to state stable discrete-time nonlinear systems with applications, Automatica, 39, 5, 821-835 (2004) · Zbl 1032.93073
[15] Liu, X.; Marquez, H. J.; Lin, Y., Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model, Automatica, 44, 12, 3157-3167 (2008) · Zbl 1153.93505
[16] Lo, J. C.; Lin, M. L., Robust \(H_\infty\) nonlinear control via fuzzy static output feedback, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 11, 1494-1502 (2003) · Zbl 1368.93153
[17] Mirkin, L. (2007). On the use of time-varying delay to represent sampled-and-hold circuits. In Proceeding of the 47th IEEE conference on decision and control. New Orleans, LA, USA; Mirkin, L. (2007). On the use of time-varying delay to represent sampled-and-hold circuits. In Proceeding of the 47th IEEE conference on decision and control. New Orleans, LA, USA
[18] Monaco, S.; Normand-Cyrot, D., On nonlinear digital control (1995), Chapman & Hall · Zbl 0828.93016
[19] Naghshtabrizi, P., Hespanha, J. P., & Teel, A. R. (2006). On the robust stability and stabilization of sampled-data systems: a hybrid system approach. In Proceeding of the 45th IEEE conference on decision and control. San Diego, CA, USA; Naghshtabrizi, P., Hespanha, J. P., & Teel, A. R. (2006). On the robust stability and stabilization of sampled-data systems: a hybrid system approach. In Proceeding of the 45th IEEE conference on decision and control. San Diego, CA, USA
[20] Nešić, D.; Angeli, D., Integral versions of ISS for sampled-data nonlinear systems via their approximate discrete-time models, IEEE Transactions on Automatic Control, 47, 12, 2033-2037 (2002) · Zbl 1364.93729
[21] Nešić, D.; Grüne, L., Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation, Automatica, 41, 7, 1143-1156 (2005) · Zbl 1115.93064
[22] Papachristodoulou, A., & Prajna, S. (2005). A tutorial on sum of squares techniques for system analysis. In Proceedings of the American control conference, ASCC. Portland, OR, USA; Papachristodoulou, A., & Prajna, S. (2005). A tutorial on sum of squares techniques for system analysis. In Proceedings of the American control conference, ASCC. Portland, OR, USA
[23] Prajna, S., Papachristodoulou, A., & Parrilo, P. A. (2002a). Introducing sostools: a general purpose sum of squares programming solver. In Proceedings of the 41st IEEE conference on decision and control. Las Vegas, Nevada, USA; Prajna, S., Papachristodoulou, A., & Parrilo, P. A. (2002a). Introducing sostools: a general purpose sum of squares programming solver. In Proceedings of the 41st IEEE conference on decision and control. Las Vegas, Nevada, USA
[24] Prajna, S., Papachristodoulou, A., & Parrilo, P. A. (2002b). Sostools—sum of squares optimization toolbox, users guide. Available at http://www.cds.caltech.edu/sostoolshttp://www.aut.ee.ethz.ch/ parrilo/sostools; Prajna, S., Papachristodoulou, A., & Parrilo, P. A. (2002b). Sostools—sum of squares optimization toolbox, users guide. Available at http://www.cds.caltech.edu/sostoolshttp://www.aut.ee.ethz.ch/ parrilo/sostools
[25] Prajna, S., Papachristodoulou, A., & Wu, F. (2004). Nonlinear control synthesis by sum-of-squares optimization: a Lyapunov-based approach. In Proceedings of the Asian control conference, ASCC. Melbourne, Australia; Prajna, S., Papachristodoulou, A., & Wu, F. (2004). Nonlinear control synthesis by sum-of-squares optimization: a Lyapunov-based approach. In Proceedings of the Asian control conference, ASCC. Melbourne, Australia
[26] Sontag, E. D., Smooth stabilization implies comprime factorization, IEEE Transactions on Automatic Control, 34, 4, 435-443 (1989) · Zbl 0682.93045
[27] Xu, S.; Lam, J., Improved delay-dependent stability criteria for time-delay systems, IEEE Transactions on Automatic Control, 50, 3, 384-387 (2005) · Zbl 1365.93376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.