×

\(H _{\infty }\) control and exponential stability of nonlinear nonautonomous systems with time-varying delay. (English) Zbl 1178.93047

Summary: This paper addresses the design of \(H _{\infty}\) state feedback controllers for a class of nonlinear time-varying delay systems. The interesting features here are that the system in consideration is nonautonomous with fast-varying delays, the delay is also involved in the observation output, and the controllers to be designed satisfy some exponential stability constraints on the closed-loop poles. By using the proposed Lyapunov functional approach, neither a controllability assumption nor a bound restriction on nonlinear perturbations is required to obtain new sufficient conditions for the \(H _{\infty }\) control. The conditions are derived in terms of a solution to the standard Riccati differential equations, which allows for simultaneous computation of the two bounds that characterize the stability rate of the solution.

MSC:

93B36 \(H^\infty\)-control
93C73 Perturbations in control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Chukwu, E.N.: Stability and Time-Optimal Control of Hereditary Systems. Academic Press, San Diego (1992) · Zbl 0751.93067
[2] Udwadia, F.E., von Bremen, H., Phohomsiri, P.: Time-delayed control design for active control of structures: principles and applications. Struct. Control Health Monit. 14, 27–61 (2007) · doi:10.1002/stc.82
[3] Udwadia, F.E., Hosseini, M., Chen, Y.: Robust control of uncertain systems with time varying delays in control input. In: Proceedings of the American Control Conference, USA, pp. 3840–3845 (1997)
[4] Zhong, Q.-C.: Robust Control of Time-delay Systems. Springer, New York (2006)
[5] Xie, L., Fridman, E., Shaked, U.: Robust H control of distributed delay systems with application to combustion control. IEEE Trans. Automat. Contr. 46(12), 1930–1935 (2001) · Zbl 1017.93038 · doi:10.1109/9.975483
[6] Niculescu, S.I.: H memoryless control with stability constraint for time-delay systems: an LMI approach. IEEE Trans. Automat. Contr. 43, 739–743 (1998) · Zbl 0911.93031 · doi:10.1109/9.668850
[7] Shaked, U., Yaesh, I.: H static output-feedback control of linear continuous-time systems with delay. IEEE Trans. Automat. Contr. 43, 1431–1436 (1998) · Zbl 0989.93031 · doi:10.1109/9.701117
[8] Fridman, E., Shaked, U., Xie, L.: Robust H filtering of linear systems with time-varying delay. IEEE Trans. Automat. Contr. 48(1), 159–165 (2003) · Zbl 1364.93797 · doi:10.1109/TAC.2002.806674
[9] Trinh, H., Ha, Q.P.: State and input simultaneous estimation for a class of time-delay systems with uncertainties. IEEE Trans. Circuits Syst. II 54, 527–531 (2007) · doi:10.1109/TCSII.2007.894425
[10] Phat, V.N., Niamsup, P.: Stabilization of linear non-autonomous systems with norm bounded controls. J. Optim. Theory Appl. 131, 135–149 (2006) · Zbl 1126.93052 · doi:10.1007/s10957-006-9129-1
[11] Ravi, R., Nagpal, K.M., Khargonekar, P.P.: H control of linear time-varying systems: A state-space approach. SIAM J. Control Optim. 29, 1394–1413 (1991) · Zbl 0741.93017 · doi:10.1137/0329071
[12] Zhang, H., Xie, L., Wang, W., Lu, X.: An innovation approach to H fixed-lag smoothing for continuous time-varying systems. IEEE Trans. Automat. Contr. 49(12), 2240–2244 (2004) · Zbl 1365.93153 · doi:10.1109/TAC.2004.838493
[13] Phat, V.N., Vinh, D.Q.: Controllability and H control for linear continuous time-varying uncertain systems. Differ. Equ. Appl. 4, 105–111 (2007)
[14] Phat, V.N., Vinh, D.Q., Bay, N.S.: L 2-stabilization and H control for linear non-autonomous time-delay systems in Hilbert spaces via Riccati equations. Adv. Nonlinear Var. Inequal. 11, 1–12 (2008) · Zbl 1176.93024
[15] Phat, V.N.: Nonlinear H optimal control in Hilbert spaces via Riccati operator equations. Nonlinear Funct. Anal. Appl. 9, 79–92 (2004) · Zbl 1128.93016
[16] Boyd, S., Il Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. Studies in Applied Mathematics. SIAM, Philadelphia (1994) · Zbl 0816.93004
[17] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993) · Zbl 0787.34002
[18] Trinh, H., Aldeen, M.: On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Trans. Automat. Contr. 42, 1005–1007 (1997) · Zbl 0881.34084 · doi:10.1109/9.599983
[19] Zevin, A., Pinsky, M.: Exponential stability and solution bounds for systems with bounded nonlinearities. IEEE Trans. Automat. Contr. 48, 1799–1804 (2003) · Zbl 1364.93610 · doi:10.1109/TAC.2003.817936
[20] Parlakci, M.N.A.: Improved robust stability criteria for time delay systems with nonlinear perturbations. In: Proc. of ICCA Conference, Budapest, June 2005, pp. 341–346
[21] Laub, A.J.: Schur techniques for solving Riccati differential equations. IEEE Trans. Automat. Contr. 24, 913–921 (1979) · Zbl 0424.65013 · doi:10.1109/TAC.1979.1102178
[22] William Thomas, R.: Riccati Differential Equations. Academic Press, San Diego (1972)
[23] Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Basel (2003) · Zbl 1027.93001
[24] Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic, Dordrecht (1991) · Zbl 0732.93008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.