×

Convex neighborhoods for Lipschitz connections and sprays. (English) Zbl 1330.53021

The author establishes that over a \(C^{2,1}\) manifold the exponentional map of any Lipschitz connection or spray determines a local Lipeomorphism and that, furthermore, reversible convex neighborhoods do exist. To that end he uses the method of Picard-Lindelöf approximation to prove the strong differentiability of the exponential map at the origin and hence a version of Gauss’ Lemma which does not require the differentiability of the exponential map. Contrary to naive differential degree counting, the distance functions are shown to gain one degree and hence to be \(C^{1,1}\). As an application to mathematical relativity, it is argued that the mentioned differentiability conditions can be considered as the optimal ones to preserve most results of causality theory. This theory is also shown to be generalizable to the Finsler spacetime case. In particular, it is proved that the local Lorentzian(-Finsler) length maximization property of casual geodesics in the class of absolutely continuous casual curves holds already for \(C^{1,1}\) spacetime metrics. Finally, the author studies the local existence of convex functions and shows that arbitrarily small globally hyperbolic convex normal neighborghoods do exist.

MSC:

53B15 Other connections
26A16 Lipschitz (Hölder) classes
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
83Cxx General relativity

References:

[1] Akbar-Zadeh, H.: Sur les espaces de Finsler a courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. 74, 281-322 (1988) · Zbl 0686.53020
[2] Ambrose, W., Palais, R.S., Singer, I.M.: Sprays. An. Acad. Brasil. Ciênc. 32(2), 163-178 (1960) · Zbl 0097.37904
[3] Andersson, L., Galloway, G.J., Howard, R.: The cosmological time function. Class. Quantum Grav. 15, 309-322 (1998) · Zbl 0911.53039 · doi:10.1088/0264-9381/15/2/006
[4] Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The theory of sprays and Finsler spaces with applications in physics and biology. Springer, Dordrecht (1993) · Zbl 0821.53001 · doi:10.1007/978-94-015-8194-3
[5] Bao, D., Chern, S.S., Shen, Z.: An introduction to Riemann-Finsler geometry. Springer, New York (2000) · Zbl 0954.53001 · doi:10.1007/978-1-4612-1268-3
[6] Beem, J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035-1039 (1970) · Zbl 0204.22003 · doi:10.4153/CJM-1970-119-7
[7] Beem, J.K.: Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature. Pacific J. Math. 64, 67-77 (1976) · Zbl 0326.53065 · doi:10.2140/pjm.1976.64.67
[8] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. Marcel Dekker Inc., New York (1996) · Zbl 0846.53001
[9] Berestovskij, V.N., Nikolaev, I.G., Reshetnyak, Y.G.: Geometry IV: non-regular Riemannian geometry. Springer, Berlin (1993) · Zbl 0777.00061
[10] Buttazzo, G., Giaquinta, M.: One-dimensional variational problems. Oxford University Press, Oxford (1998) · Zbl 0915.49001
[11] Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515-536 (2008) · Zbl 1142.53051 · doi:10.1016/j.aim.2008.01.004
[12] do Carmo, M.: Riemannian geometry. Birkhäuser, Boston (1992) · Zbl 0752.53001 · doi:10.1007/978-1-4757-2201-7
[13] Cartan, H.: Differential calculus. Hermann, Paris (1971) · Zbl 0223.35004
[14] Chen, B.L., LeFloch, P.G.: Injectivity radius of Lorentzian manifolds. Commun. Math. Phys. 278, 679-713 (2008) · Zbl 1156.53040 · doi:10.1007/s00220-008-0412-x
[15] Chruściel, P.T.: Elements of causality theory (2011). ArXiv:1110.6706v1 · Zbl 1142.53051
[16] Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Grav. 29, 145001 (2012) · Zbl 1246.83025 · doi:10.1088/0264-9381/29/14/145001
[17] Clarke, F.H.: On the inverse function theorem. Pacific J. Math. 64, 97-102 (1976) · Zbl 0331.26013 · doi:10.2140/pjm.1976.64.97
[18] DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 4(14), 249-260 (1981) · Zbl 0486.53014
[19] Dieudonné, J.: Treatise on Analysis. Foundations of modern analysis. Academic Press, New York (1969) · Zbl 0176.00502
[20] Dolecki, S., Greco, G.H.: Amazing oblivion of Peano’s legacy (2012) · Zbl 1494.01025
[21] Esser, M., Shisha, O.: A modified differentiation. Am. Math. Mon. 71, 904-906 (1964) · Zbl 0136.03902 · doi:10.2307/2312409
[22] Evans, L.C.: Partial differential equations. American Mathematical Society, Providence (1998) · Zbl 0902.35002
[23] Fan, L., Liu, S., Gao, S.: Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279, 276-289 (2003) · Zbl 1014.49014
[24] Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418-491 (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[25] Foertsch, T.: Ball versus distance convexity of metric spaces. Beiträge Algebra Geom. 45, 481-500 (2004) · Zbl 1070.53046
[26] Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry. Springer, Berlin (1987) · Zbl 0636.53001 · doi:10.1007/978-3-642-97026-9
[27] Garg, K.M.: Theory of differentiation. Wiley, New York (1998) · Zbl 0918.26003
[28] Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31, 289-308 (1982) · Zbl 0496.53042 · doi:10.1512/iumj.1982.31.31026
[29] Hartman, P.: On the local uniqueness of geodesics. Am. J. Math. 72, 723-730 (1950) · Zbl 0039.16803 · doi:10.2307/2372288
[30] Hartman, P.: On geodesic coordinates. Am. J. Math. 73, 949-954 (1951) · Zbl 0044.17306 · doi:10.2307/2372125
[31] Hartman, P.: Ordinary differential equations. Wiley, New York (1964) · Zbl 0125.32102
[32] Hartman, P.: Remarks on geodesics. Proc. Am. Math. Soc. 89, 467-472 (1983) · Zbl 0526.53015 · doi:10.1090/S0002-9939-1983-0715868-9
[33] Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132-148 (1951) · Zbl 0042.15605 · doi:10.2307/2372166
[34] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[35] Krantz, S.G., Parks, H.R.: The implicit function theorem: history, theory, and applications. Birkhäuser, Boston (2000) · Zbl 1269.58003
[36] Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \[C^{1,1}\] C1,1-metric. Differential Geom. Appl. 34, 14-24 (2014). ArXiv:1306.4776v1 · Zbl 1291.53016
[37] Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: A regularisation approach to causality theory for \[C^{1,1}\] C1,1-Lorentzian metrics. Gen. Relativ. Gravit. 46, 1738 (2014). ArXiv:1310.4404v2 · Zbl 1308.83026
[38] Lang, S.: Differential and Riemannian manifolds. Springer, New York (1995) · Zbl 0824.58003 · doi:10.1007/978-1-4612-4182-9
[39] Lang, S.: Fundamentals of differential geometry. Springer, New York (1999) · Zbl 0932.53001 · doi:10.1007/978-1-4612-0541-8
[40] Leach, E.B.: A note on inverse function theorems. Proc. Am. Math. Soc. 12, 694-697 (1961) · Zbl 0191.15003 · doi:10.1090/S0002-9939-1961-0126146-9
[41] Leach, E.B.: On a related function theorem. Proc. Am. Math. Soc. 14, 687-689 (1963) · Zbl 0199.44103 · doi:10.1090/S0002-9939-1963-0154094-9
[42] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. Kaseisha Press, Tokio (1986) · Zbl 0594.53001
[43] Milnor, J.: Morse theory. Princeton University Press, Princeton (1969)
[44] Minguzz, E.: The causal ladder and the strength of \[KK\]-causality. I. Quantum Grav. 25, 015009 (2008) · Zbl 1132.83002 · doi:10.1088/0264-9381/25/1/015009
[45] Minguzzi, E.: Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49, 092501 (2008) · Zbl 1152.81565 · doi:10.1063/1.2973048
[46] Minguzzi, E.: The equality of mixed partial derivatives under weak differentiability conditions. Real Anal. Exchange (2014) (To appear. E-print Archive) ArXiv:1309.5841 · Zbl 1393.26010
[47] Minguzzi, E.: Light cones in Finsler spacetime. Comm. Math. Phys. (2014). ArXiv:1403.7060. doi:10.1007/s00220-014-2215-6 · Zbl 1310.83007
[48] Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes, ESI Lect. Math. Phys., vol. Baum, H., Alekseevsky, D. (eds.) Recent developments in pseudo-Riemannian geometry, pp. 299-358. Eur. Math. Soc. Publ. House, Zurich (2008). ArXiv:gr-qc/0609119 · Zbl 1148.83002
[49] Nijenhuis, A.: Strong derivatives and inverse mappings. Am. Math. Mon. 81, 969-980 (1974) · Zbl 0296.58002 · doi:10.2307/2319298
[50] Nomizu, K.: Remarks on sectional curvature of an indefinite metric. Proc. Am. Math. Soc. 89, 473-476 (1983) · Zbl 0524.53040 · doi:10.1090/S0002-9939-1983-0715869-0
[51] O’Neill, B.: Semi-Riemannian geometry. Academic Press, San Diego (1983) · Zbl 0531.53051
[52] Peano, G.: Sur la définition de la dérivée. Mathesis 2, 12-14 (1892) · JFM 24.0248.05
[53] Penrose, R.: Techniques of differential topology in relativity. Cbms-Nsf regional conference series in applied mathematics. SIAM, Philadelphia (1972) · Zbl 0321.53001 · doi:10.1137/1.9781611970609
[54] Perelman, G.: Elements of Morse theory on Aleksandrov spaces (russian). Algebra i Analiz 5(1), 232-241 (1993). Engl. transl. St. Peterburg Math. J. 5:1, 205-213 (1994) · Zbl 0496.53042
[55] Perelman, G., Petrunin, A.: Extremal subsets in Aleksandrov spaces and the generalized Lieberman theorem (in russian). Algebra i Analiz 5(1), 242-256 (1993). Engl. transl. St. Peterburg Math. J. 5:1, 215-227 (1994) · Zbl 0802.53019
[56] Perlick, V.: Fermat principle in Finsler spacetimes. Gen. Relativ. Gravit. 38, 365-380 (2006) · Zbl 1092.83002 · doi:10.1007/s10714-005-0225-6
[57] Rudin, W.: Real and complex analysis. McGraw-Hill, London (1970) · Zbl 0142.01701
[58] Sakai, T.: Riemannian geometry. American Mathematical Society, Providence (1996) · Zbl 0886.53002
[59] Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30, 701-848 (1998) · Zbl 0924.53045 · doi:10.1023/A:1018801101244
[60] Villani, C.: Optimal transport. Springer, Berlin (2009) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[61] Wang, Z.: Notes on differential geometry (2012) · Zbl 1092.83002
[62] Whitehead, J.H.C.: Convex regions in the geometry of paths. Quart. J. Math. Oxford Ser. 3, 33-42 (1932) · Zbl 0004.13102 · doi:10.1093/qmath/os-3.1.33
[63] Whitehead, J.H.C.: Convex regions in the geometry of paths—addendum. Quart. J. Math. Oxford Ser. 4, 226-227 (1933) · JFM 59.1349.02 · doi:10.1093/qmath/os-4.1.226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.