×

A regularisation approach to causality theory for \(C^{1,1}\)-Lorentzian metrics. (English) Zbl 1308.83026

Summary: We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to \(C^{1,1}\). Our approach is based on regularisations of the metric adapted to the causal structure.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C10 Equations of motion in general relativity and gravitational theory
53Z05 Applications of differential geometry to physics
22E10 General properties and structure of complex Lie groups
54F65 Topological characterizations of particular spaces

References:

[1] Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329-335 (1969) · Zbl 0182.59901 · doi:10.1007/BF01645389
[2] Klainerman, S., Rodnianski, I.: Rough solution for the Einstein vacuum equations. Ann. Math. 161(2), 1143-1193 (2005) · Zbl 1089.83006 · doi:10.4007/annals.2005.161.1143
[3] Maxwell, D.: Rough solutions of the Einstein constraint equations. J. Reine Angew. Math. 590, 1-29 (2006) · Zbl 1088.83004 · doi:10.1515/CRELLE.2006.001
[4] Klainerman, S., Rodnianski, I., Szeftel, J.: Overview of the proof of the bounded \[L^2\] L2 curvature conjecture, arXiv:1204.1772 [gr-qc], 2012 · Zbl 1330.53089
[5] Lichnerowicz, A.: Théories relativistes de la gravitation et de l’électromgnétisme. Masson, Paris (1955) · Zbl 0065.20704
[6] Griffiths, J., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009) · Zbl 1184.83003 · doi:10.1017/CBO9780511635397
[7] Penrose, R.: Techniques of Differential Topology in Relativity (Conf. Board of the Mathematical Sciences Regional Conf. Series in Applied Mathematics vol 7). SIAM, Philadelphia, PA (1972) · Zbl 0042.15605
[8] O’Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983) · Zbl 0531.53051
[9] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry (Monographs and Textbooks in Pure and Applied Mathematics vol 202) 2nd edn. New York, Dekker (1996) · Zbl 1246.83025
[10] Kriele, M.: Spacetime. Foundations of General Relativity and Differential Geometry. Lecture Notes in Physics 59. Springer, Berlin (1999) · Zbl 0933.83001
[11] Minguzzi, E., Sanchez, M.: The causal hierarchy of spacetimes in recent developments in pseudo-Riemannian geometry. ESI Lect. Math. Phys., Eur. Math. Soc. Publ. House, Zürich (2008) · Zbl 0966.83022
[12] Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[13] Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30(5), 701-848 (1998) · Zbl 0924.53045 · doi:10.1023/A:1018801101244
[14] García-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quantum Gravity 22, R1-R84 (2005) · Zbl 1073.83001 · doi:10.1088/0264-9381/22/9/R01
[15] Chruściel, P.T.: Elements of causality theory, arXiv:1110.6706 · Zbl 1073.83001
[16] Clarke, C.J.S.: The analysis of spacetime singularities. Cambridge Lect. Notes Phys. 1. Cambridge University Press (1993) · Zbl 0835.53093
[17] Sorkin, R.D., Woolgar, E.: A causal order for spacetimes with \[C^0\] C0 Lorentzian metrics: Proof of compactness of the space of causal curves class. Quantum Gravity 13, 1971-1994 (1996) · Zbl 0966.83022 · doi:10.1088/0264-9381/13/7/023
[18] Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 155, 1-37 (2011) · Zbl 1246.53095
[19] Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Gravity 29(14), 145001 (2012) · Zbl 1246.83025 · doi:10.1088/0264-9381/29/14/145001
[20] Hartman, P.: On geodesic coordinates. Am. J. Math. 73, 949-954 (1951) · Zbl 0044.17306 · doi:10.2307/2372125
[21] Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132-148 (1951) · Zbl 0042.15605 · doi:10.2307/2372166
[22] Whitehead, J.H.C.: Convex regions in the geometry of paths. Q. J. Math., Oxf. Ser. 3, 33-42, (1932). Addendum, ibid. 4, 226 (1933) · Zbl 0004.13102
[23] Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \[C^{1,1}\] C1,1-metric. Differ. Geom. Appl. 34, 14-24 (2014) · Zbl 1291.53016 · doi:10.1016/j.difgeo.2014.03.005
[24] Chen, B.-L., LeFloch, P.: Injectivity radius of Lorentzian manifolds. Commun. Math. Phys. 278, 679-713 (2008) · Zbl 1156.53040 · doi:10.1007/s00220-008-0412-x
[25] Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays, arXiv:1308.6675 · Zbl 1330.53021
[26] Hirsch, M.W.: Differential Topology. Springer, Berlin (1976) · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[27] Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions. Kluwer, Dordrecht (2001) · Zbl 0998.46015
[28] Hörmann, G., Kunzinger, M., Steinbauer, R.: Wave equations on non-smooth space-times. Evolution equations of hyperbolic and Schrödinger type, pp. 163-186, Progr. Math., 301, Birkhäuser/Springer, Berlin (2012) · Zbl 1262.58018
[29] Amann, H.: Ordinary Differential Equations. De Gruyter, Berlin (1990) · Zbl 0708.34002 · doi:10.1515/9783110853698
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.