×

On the total graph of a ring and its related graphs: a survey. (English) Zbl 1327.13007

Fontana, Marco (ed.) et al., Commutative algebra. Recent advances in commutative rings, integer-valued polynomials, and polynomial functions. Based on mini-courses and a conference on commutative rings, integer-valued polynomials and polynomial functions, Graz, Austria, December 16–18 and December 19–22, 2012. New York, NY: Springer (ISBN 978-1-4939-0924-7/hbk; 978-1-4939-0925-4/ebook). 39-54 (2014).
Summary: Let \(R\) be a (commutative) ring with nonzero identity and \(Z(R)\) be the set of all zero divisors of \(R\). The total graph of \(R\) is the simple undirected graph \(T(\Gamma(R))\) with vertices all elements of \(R\), and two distinct vertices \(x\) and \(y\) are adjacent if and only if \(x+y\in Z(R)\). This type of graphs has been studied by many authors. In this paper, we state many of the main results on the total graph of a ring and its related graphs.
For the entire collection see [Zbl 1294.13002].

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B99 Commutative ring extensions and related topics
05C99 Graph theory
Full Text: DOI

References:

[1] A. Abbasi, S. Habib, The total graph of a commutative ring with respect to proper ideals. J. Korean Math. Soc. 49, 85-98 (2012) · Zbl 1267.13033 · doi:10.4134/JKMS.2012.49.1.085
[2] S. Akbari, F. Heydari, The regular graph of a non-commutative ring. Bull. Austral. Math. Soc. 89, 132-140 (2013) · Zbl 1298.05156 · doi:10.1017/S0004972712001177
[3] S. Akbari, M. Jamaali, S.A. Seyed Fakhari, The clique numbers of regular graphs of matrix algebras are finite. Linear Algebra Appl. 43, 1715-1718 (2009) · Zbl 1175.05079 · doi:10.1016/j.laa.2009.06.005
[4] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213, 2224-2228 (2009) · Zbl 1174.13009 · doi:10.1016/j.jpaa.2009.03.013
[5] S. Akbari, M. Aryapoor, M. Jamaali, Chromatic number and clique number of subgraphs of regular graph of matrix algebras. Linear Algebra Appl. 436, 2419-2424 (2012) · Zbl 1239.05058 · doi:10.1016/j.laa.2011.09.020
[6] D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring. Comm. Algebra 36, 3073-3092 (2008) · Zbl 1152.13001 · doi:10.1080/00927870802110888
[7] D.F. Anderson, A. Badawi, The total graph of a commutative ring. J. Algebra 320, 2706-2719 (2008) · Zbl 1158.13001 · doi:10.1016/j.jalgebra.2008.06.028
[8] D.F. Anderson, A. Badawi, The total graph of a commutative ring without the zero element. J. Algebra Appl. 11, (18 pages) (2012). doi:10.1142/S0219498812500740 · Zbl 1247.13004
[9] D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring. J. Algebra Appl. 12, (18 pages) (2013). doi:10.1142/S021949881250212X · Zbl 1272.13003
[10] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217, 434-447 (1999) · Zbl 0941.05062 · doi:10.1006/jabr.1998.7840
[11] D.F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210, 543-550 (2007) · Zbl 1119.13005 · doi:10.1016/j.jpaa.2006.10.007
[12] D.D. Anderson, M. Winders, Idealization of a module. J. Comm. Algebra, 1 3-56 (2009) · Zbl 1194.13002 · doi:10.1216/JCA-2009-1-1-3
[13] D.F. Anderson, M. Axtell, J. Stickles, Zero-divisor graphs in commutative rings, in \(Commutative Algebra Noetherian and Non-Noetherian Perspectives\), ed. by M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson (Springer, New York, 2010), pp. 23-45 · Zbl 1225.13002
[14] D.F. Anderson, J. Fasteen, J.D. LaGrange, The subgroup graph of a group. Arab. J. Math. 1, 17-27 (2012) · Zbl 1255.05093 · doi:10.1007/s40065-012-0018-1
[15] N. Ashra, H.R. Maimani, M.R. Pournaki, S. Yassemi, Unit graphs associated with rings. Comm. Algebra 38, 2851-2871 (2010) · Zbl 1219.05150 · doi:10.1080/00927870903095574
[16] S.E. Atani, S. Habibi, The total torsion element graph of a module over a commutative ring. An. Stiint. Univ.’Ovidius Constanta Ser. Mat. 19, 23-34 (2011) · Zbl 1224.13004
[17] M. Axtel, J. Stickles: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204, 23-43 (2006)
[18] Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar, On the associated graphs to a commutative ring. J. Algebra Appl. 11, (17 pages) (2012). doi:10.1142/S021949881105610 · Zbl 1238.13015
[19] I. Beck, Coloring of commutative rings. J. Algebra 116, 208-226 (1988) · Zbl 0654.13001 · doi:10.1016/0021-8693(88)90202-5
[20] B. Bollaboás, \(Graph Theory, An Introductory Course\) (Springer, New York, 1979)
[21] T. Chelvam, T. Asir, Domination in total graph on · Zbl 1247.05098 · doi:10.1142/S1793830911001309
[22] T. Chelvam, T. Asir, Domination in the total graph of a commutative ring. J. Combin. Math. Combin. Comput. (to appear) · Zbl 1297.05114
[23] T. Chelvam, T. Asir, Intersection graph of gamma sets in the total graph. Discuss. Math. Graph Theory 32, 339-354 (2012) · Zbl 1255.05110
[24] T. Chelvam, T. Asir, On the genus of the total graph of a commutative ring. Comm. Algebra 41, 142-153 (2013) · Zbl 1261.05042 · doi:10.1080/00927872.2011.624147
[25] T. Chelvam, T. Asir, On the total graph and its complement of a commutative ring. Comm. Algebra 41, 3820-3835 (2013). doi:10.1080/00927872.2012.678956 · Zbl 1272.05074 · doi:10.1080/00927872.2011.624147
[26] T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph I. J. Algebra Appl. 12, (18 pages), (2013). doi:10.1142/S0219498812501988 · Zbl 1264.05061
[27] T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph II. J. Algebra Appl. 12, (14 pages), (2013). doi:10.1142/S021949881250199X · Zbl 1264.05058
[28] S. Endo, Note on p.p. rings. Nagoya Math. J. 17, 167-170 (1960) · Zbl 0117.02203
[29] J.A. Huckaba, \(Commutative Rings with Zero Divisors\) (Dekker. New York/Basel, 1988) · Zbl 0637.13001
[30] I. Kaplansky, \(Commutative Rings\) (University of Chicago Press, Chicago, 1974) · Zbl 0296.13001
[31] K. Khashyarmanesh, M.R. Khorsandi, A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 137, 242-253 (2012) · Zbl 1289.05205 · doi:10.1007/s10474-012-0224-5
[32] H.R. Maimani, M.R. Pouranki, A. Tehranian, S. Yassemi, Graphs attached to rings revisited. Arab. J. Sci. Eng. 36, 997-1011 (2011) · doi:10.1007/s13369-011-0096-y
[33] H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one. Rocky Mountain J. Math. 42, 1551-1560 (2012) · Zbl 1254.05164 · doi:10.1216/RMJ-2012-42-5-1551
[34] W.W. McGovern, Clean semiprime f-rings with bounded inversion. Comm. Algebra 31, 3295-3304 (2003) · Zbl 1021.06011 · doi:10.1081/AGB-120022226
[35] Z. Pucanović, Z. Petrović, On the radius and the relation between the total graph of a commutative ring and its extensions. Publ. Inst. Math. (Beograd)(N.S.) 89, 1-9 (2011) · Zbl 1299.13010
[36] P.K. Sharma, S.M. Bhatwadekar, A note on graphical representations of rings. J. Algebra 176, 124-127 (1995) · Zbl 0838.05051 · doi:10.1006/jabr.1995.1236
[37] M.H. Shekarriz, M.H. Shiradareh Haghighi, H. Sharif, On the total graph of a finite commutative ring. Comm. Algebra 40, 2798-2807 (2012) · Zbl 1266.13018 · doi:10.1080/00927872.2011.585680
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.