×

The intersection graph of gamma sets in the total graph of a commutative ring. II. (English) Zbl 1264.05058

Summary: The intersection graph \(I_{T\Gamma}(R)\) of gamma sets in the total graph \(I_{\Gamma}(R)\) of a commutative ring \(R\), is the undirected graph with vertex set as the collection of all \(\gamma\)-sets in the total graph of \(R\) and two distinct vertices \(u\) and \(v\) are adjacent if and only if \(u\cap v\neq \emptyset\).
T. T. Chelvam and T. Asir [J. Algebra Appl. 12, No. 4, Paper No. 1250198, 18 p. (2013; Zbl 1264.05061)] investigated \(I_{T\Gamma}(R)\) where \(R\) is a commutative Artin ring.
In this paper, we continue to investigate \(I_{T\Gamma}(R)\) and actually we study the Eulerian, Hamiltonian and pancyclic nature of \(I_{T\Gamma}(R)\). Further, we focus on certain graph theoretic parameters of \(I_{T\Gamma}(R)\) like the independence number, the clique number and the connectivity of \(I_{T\Gamma}(R)\). Also, we obtain both vertex and edge chromatic numbers of \(I_{T\Gamma}(R)\).
In fact, it is proved that if \(R\) is a finite commutative ring, then \(\chi (I_{T\Gamma}(R)) = \omega(I_{T\Gamma}(R))\). Having proved that \(I_{T\Gamma}(R)\) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which \(I_{T\Gamma}(R)\) is perfect.
In this sequel, we characterize all commutative Artin rings for which \(I_{T\Gamma}(R)\) is of class one (i.e., \(\chi^{\prime}(I_{T\Gamma}(R)) = \Delta(I_{T\Gamma}(R)))\).
Finally, it is proved that the vertex connectivity and edge connectivity of \(I_{T\Gamma}(R)\) are equal to the degree of any vertex in \(I_{T\Gamma}(R)\).

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C17 Perfect graphs
05C40 Connectivity
05C45 Eulerian and Hamiltonian graphs
13A15 Ideals and multiplicative ideal theory in commutative rings
13M05 Structure of finite commutative rings
16P20 Artinian rings and modules (associative rings and algebras)

Citations:

Zbl 1264.05061
Full Text: DOI

References:

[1] DOI: 10.1016/j.jpaa.2009.03.013 · Zbl 1174.13009 · doi:10.1016/j.jpaa.2009.03.013
[2] DOI: 10.1016/j.jalgebra.2008.06.028 · Zbl 1158.13001 · doi:10.1016/j.jalgebra.2008.06.028
[3] Anderson D. F., J. Algebra Appl. 11 (2012)
[4] DOI: 10.1006/jabr.1993.1171 · Zbl 0798.05067 · doi:10.1006/jabr.1993.1171
[5] DOI: 10.1007/978-1-4419-8505-7 · doi:10.1007/978-1-4419-8505-7
[6] DOI: 10.1142/S0219498811005610 · Zbl 1238.13015 · doi:10.1142/S0219498811005610
[7] DOI: 10.1016/0021-8693(88)90202-5 · Zbl 0654.13001 · doi:10.1016/0021-8693(88)90202-5
[8] DOI: 10.1142/S0219498811004896 · Zbl 1276.13002 · doi:10.1142/S0219498811004896
[9] DOI: 10.1142/S0219498811004902 · Zbl 1276.13003 · doi:10.1142/S0219498811004902
[10] Chartrand G., Chromatic Graph Theory (2009) · Zbl 1169.05001
[11] Kaplansky I., Commutative Rings (1974)
[12] DOI: 10.1006/jabr.1995.1236 · Zbl 0838.05051 · doi:10.1006/jabr.1995.1236
[13] DOI: 10.1142/S1793830911001309 · Zbl 1247.05098 · doi:10.1142/S1793830911001309
[14] Tamizh Chelvam T., Discuss. Math. Graph Theory 32 pp 339– (2012)
[15] DOI: 10.1080/00927872.2011.624147 · Zbl 1261.05042 · doi:10.1080/00927872.2011.624147
[16] Tamizh Chelvam T., J. Algebra Appl 12 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.