×

The generalized total graph of a commutative ring. (English) Zbl 1272.13003

The authors investigate the structure of the generalized total graph \(GT_{H}(R)\) where \(R\) is a commutative ring with a nonzero identity element and \(H\) is a nonempty proper subset of \(R\) such that \(R\setminus H\) is a saturated multiplicatively closed subset of \(R\). In case where \(H\) is a prime ideal of \(R\), a complete description of \(GT_{H}(R)\) is given and the diameter and girth of the graphs \(GT_{H}(H)\), \(GT_{H}(R\setminus H)\) and \(GT_{H}(R)\) are determined. In case where \(H\) is not an ideal of \(R\), the authors prove that \(GT_{H}(H)\) is always connected but never complete and its diameter is \(2\). Moreover, \(GT_{H}(H)\) and \(GT_{H}(R\setminus H)\) are never disjoint subgraphs of \(GT_{H}(R)\) and \(|H|\geq 3\). Also if \(GT_{H}(R\setminus H)\) is connected, then so is \(GT_{H}(R)\). The paper closes with a description of the generalized total graph \(GT_{H}(R)\) for some specific rings, namely when \(R\) is either an idealization or a \(D+M\) construction or a localization.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B99 Commutative ring extensions and related topics
05C99 Graph theory
Full Text: DOI

References:

[1] DOI: 10.4134/JKMS.2012.49.1.085 · Zbl 1267.13033 · doi:10.4134/JKMS.2012.49.1.085
[2] DOI: 10.1016/j.jpaa.2009.03.013 · Zbl 1174.13009 · doi:10.1016/j.jpaa.2009.03.013
[3] DOI: 10.1216/JCA-2009-1-1-3 · Zbl 1194.13002 · doi:10.1216/JCA-2009-1-1-3
[4] D. F. Anderson, M. C. Axtell and J. A. Stickles Jr., Commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana (Springer-Verlag, New York, 2010) pp. 23–45.
[5] DOI: 10.1080/00927870802110888 · Zbl 1152.13001 · doi:10.1080/00927870802110888
[6] DOI: 10.1016/j.jalgebra.2008.06.028 · Zbl 1158.13001 · doi:10.1016/j.jalgebra.2008.06.028
[7] DOI: 10.1142/S0219498812500740 · Zbl 1247.13004 · doi:10.1142/S0219498812500740
[8] DOI: 10.1007/s40065-012-0018-1 · Zbl 1255.05093 · doi:10.1007/s40065-012-0018-1
[9] DOI: 10.1006/jabr.1998.7840 · Zbl 0941.05062 · doi:10.1006/jabr.1998.7840
[10] DOI: 10.1016/j.jpaa.2006.10.007 · Zbl 1119.13005 · doi:10.1016/j.jpaa.2006.10.007
[11] DOI: 10.1080/00927870903095574 · Zbl 1219.05150 · doi:10.1080/00927870903095574
[12] Atani S. E., An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat. 19 pp 23– (2011)
[13] DOI: 10.1016/j.jpaa.2005.04.004 · Zbl 1104.13003 · doi:10.1016/j.jpaa.2005.04.004
[14] DOI: 10.1142/S0219498811005610 · Zbl 1238.13015 · doi:10.1142/S0219498811005610
[15] DOI: 10.1016/0021-8693(88)90202-5 · Zbl 0654.13001 · doi:10.1016/0021-8693(88)90202-5
[16] Bollaboás B., Graph Theory, An Introductory Course (1979)
[17] DOI: 10.1307/mmj/1029001619 · Zbl 0318.13007 · doi:10.1307/mmj/1029001619
[18] Huckaba J. A., Commutative Rings with Zero Divisors (1988) · Zbl 0637.13001
[19] Kaplansky I., Commutative Rings (1974)
[20] DOI: 10.1007/s10474-012-0224-5 · Zbl 1289.05205 · doi:10.1007/s10474-012-0224-5
[21] DOI: 10.1007/s13369-011-0096-y · doi:10.1007/s13369-011-0096-y
[22] DOI: 10.1216/RMJ-2012-42-5-1551 · Zbl 1254.05164 · doi:10.1216/RMJ-2012-42-5-1551
[23] DOI: 10.2298/PIM1103001P · Zbl 1299.13010 · doi:10.2298/PIM1103001P
[24] DOI: 10.1006/jabr.1995.1236 · Zbl 0838.05051 · doi:10.1006/jabr.1995.1236
[25] DOI: 10.1080/00927872.2011.585680 · Zbl 1266.13018 · doi:10.1080/00927872.2011.585680
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.