×

Quantifying T lymphocyte turnover. (English) Zbl 1322.92018

Summary: Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-\(2'\)-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling.
We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD\(4^+\) and CD\(8^+\) T cell pools in mice and men.

MSC:

92C55 Biomedical imaging and signal processing

References:

[1] Allsopp, R. C.; Vaziri, H.; Patterson, C.; Goldstein, S.; Younglai, E. V.; Futcher, A. B.; Greider, C. W.; Harley, C. B., Telomere length predicts replicative capacity of human fibroblasts, Proc. Natl. Acad. Sci. USA, 89, 10114-10118 (1992)
[2] Althaus, C. L.; Ganusov, V. V.; De Boer, R. J., Dynamics of CD \(8^+\) T cell responses during acute and chronic lymphocytic choriomeningitis virus infection, J. Immunol., 179, 2944-2951 (2007)
[3] Andrade, A.; Bailey, J. R.; Xu, J.; Philp, F. H.; Quinn, T. C.; Williams, T. M.; Ray, S. C.; Thomas, D. L.; Blankson, J. N., CD \(4^+\) T cell depletion in an untreated HIV type 1-infected human leukocyte antigen-B⁎5801-positive patient with an undetectable viral load, Clin. Infect. Dis., 46, e78-e82 (2008)
[4] Antia, R.; Bergstrom, C. T.; Pilyugin, S. S.; Kaech, S. M.; Ahmed, R., Models of CD \(8^+\) responses1. What is the antigen-independent proliferation program, J. Theor. Biol., 221, 585-598 (2003) · Zbl 1464.92037
[5] Antia, R.; Ganusov, V. V.; Ahmed, R., The role of models in understanding CD \(8^+\) T-cell memory, Nat. Rev. Immunol., 5, 101-111 (2005)
[6] Asquith, B.; Bangham, C. R., An introduction to lymphocyte and viral dynamicsthe power and limitations of mathematical analysis, Proc. R. Soc. Lond. B Biol. Sci., 270, 1651-1657 (2003)
[7] Asquith, B.; Debacq, C.; Florins, A.; Gillet, N.; Sanchez-Alcaraz, T.; Mosley, A.; Willems, L., Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE), Proc. R. Soc. Lond. B Biol. Sci., 273, 1165-1171 (2006)
[8] Asquith, B.; Debacq, C.; Macallan, D. C.; Willems, L.; Bangham, C. R., Lymphocyte kineticsthe interpretation of labelling data, Trends Immunol., 23, 596-601 (2002)
[9] Badovinac, V. P.; Haring, J. S.; Harty, J. T., Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD \(8^+\) T cell response to infection, Immunity, 26, 827-841 (2007)
[10] Badovinac, V. P.; Porter, B. B.; Harty, J. T., Programmed contraction of CD \(8^+\) T cells after infection, Nat. Immunol., 3, 619-626 (2002)
[11] Bains, I.; Antia, R.; Callard, R.; Yates, A. J., Quantifying the development of the peripheral naive CD \(4^+\) T-cell pool in humans, Blood, 113, 5480-5487 (2009)
[12] Bains, I.; Thiebaut, R.; Yates, A. J.; Callard, R., Quantifying thymic exportcombining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output, J. Immunol., 183, 4329-4336 (2009)
[13] Banks, H. T.; Clayton Thompson, W., A division-dependent compartmental model with cyton and intracellular label dynamics, Int. J. Pure Appl. Math., 77, 119-147 (2012) · Zbl 1247.92007
[14] Banks, H. T.; Clayton Thompson, W.; Peligero, C.; Giest, S.; Argilaguet, J.; Meyerhans, A., A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays, Math. Biosci. Eng., 9, 699-736 (2012) · Zbl 1259.92017
[15] Banks, H. T.; Sutton, K. L.; Thompson, W. C.; Bocharov, G.; Doumic, M.; Schenkel, T.; Argilaguet, J.; Giest, S.; Peligero, C.; Meyerhans, A., A new model for the estimation of cell proliferation dynamics using CFSE data, J. Immunol. Methods, 373, 143-160 (2011)
[16] Banks, H. T.; Sutton, K. L.; Thompson, W. C.; Bocharov, G.; Roose, D.; Schenkel, T.; Meyerhans, A., Estimation of cell proliferation dynamics using CFSE data, Bull. Math. Biol., 73, 116-150 (2011) · Zbl 1209.92012
[17] Bell, G. I.; Anderson, E. C., Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J., 7, 329-351 (1967)
[18] Bello, G.; Velasco-de Castro, C. A.; Bongertz, V.; Rodrigues, C. A.; Giacoia-Gripp, C. B.; Pilotto, J. H.; Grinsztejn, B.; Veloso, V. G.; Morgado, M. G., Immune activation and antibody responses in non-progressing elite controller individuals infected with HIV-1, J. Med. Virol., 81, 1681-1690 (2009)
[19] Bentwich, Z.; Kalinkovich, A.; Weisman, Z.; Grossman, Z., Immune activation in the context of HIV infection, Clin. Exp. Immunol., 111, 1-2 (1998)
[20] Bernard, S.; Pujo-Menjouet, L.; Mackey, M. C., Analysis of cell kinetics using a cell division markermathematical modeling of experimental data, Biophys. J., 84, 3414-3424 (2003)
[21] Berzins, S. P.; Boyd, R. L.; Miller, J. F., The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool, J. Exp. Med., 187, 1839-1848 (1998)
[22] Berzins, S. P.; Godfrey, D. I.; Miller, J. F.; Boyd, R. L., A central role for thymic emigrants in peripheral T cell homeostasis, Proc. Natl. Acad. Sci. USA, 96, 9787-9791 (1999)
[23] Blackburn, E. H., Structure and function of telomeres, Nature, 350, 569-573 (1991)
[24] Blattman, J. N.; Antia, R.; Sourdive, D. J.; Wang, X.; Kaech, S. M.; Murali-Krishna, K.; Altman, J. D.; Ahmed, R., Estimating the precursor frequency of naive antigen-specific CD8 T cells, J. Exp. Med., 195, 657-664 (2002)
[25] Bocharov, G.; Quiel, J.; Luzyanina, T.; Alon, H.; Chiglintsev, E.; Chereshnev, V.; Meier-Schellersheim, M.; Paul, W. E.; Grossman, Z., Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number, Proc. Natl. Acad. Sci. USA, 108, 3318-3323 (2011)
[26] Bonhoeffer, S.; Mohri, H.; Ho, D.; Perelson, A. S., Quantification of cell turnover kinetics using \(5 - \operatorname{bromo} - 2 \prime - \operatorname{deoxyuridine} \), J. Immunol., 164, 5049-5054 (2000)
[27] Borghans, J. A.; Tesselaar, K., Be fruitful, multiply, and replenish, Blood, 113, 5369-5370 (2009)
[28] Borghans, J. A.M.; De Boer, R. J., Quantification of T-cell dynamicsfrom telomeres to DNA labelling, Immunol. Rev., 216, 35-47 (2007)
[29] Borrow, P.; Evans, C. F.; Oldstone, M. B., Virus-induced immunosuppressionimmune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression, J. Virol., 69, 1059-1070 (1995)
[30] Broussard, S. R.; Staprans, S. I.; White, R.; Whitehead, E. M.; Feinberg, M. B.; Allan, J. S., Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease, J. Virol., 75, 2262-2275 (2001)
[31] Busch, R.; Neese, R. A.; Awada, M.; Hayes, G. M.; Hellerstein, M. K., Measurement of cell proliferation by heavy water labeling, Nat. Protocol, 2, 3045-3057 (2007)
[32] Busch, R.; Siah, I. M.; Gee, T. A.; Hellerstein, M. K., Heavy water labeling of DNA for measurement of cell proliferation and recruitment during primary murine lymph node responses against model antigens, J. Immunol. Methods, 337, 24-34 (2008)
[33] Cable, J. M.; Enquist, B. J.; Moses, M. E., The allometry of host-pathogen interactions, PLoS One, 2, e1130 (2007)
[34] Chakrabarti, L. A.; Lewin, S. R.; Zhang, L.; Gettie, A.; Luckay, A.; Martin, L. N.; Skulsky, E.; Ho, D. D.; Cheng-Mayer, C.; Marx, P. A., Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection, J. Virol., 74, 1209-1223 (2000)
[35] Chen, R.; Hyrien, O.; Noble, M.; Mayer-Proschel, M., A composite likelihood approach to the analysis of longitudinal clonal data on multitype cellular systems under an age-dependent branching process, Biostatistics, 12, 173-191 (2011) · Zbl 1437.62419
[36] Choo, D. K.; Murali-Krishna, K.; Anita, R.; Ahmed, R., Homeostatic turnover of virus-specific memory CD8 T cells occurs stochastically and is independent of CD4 T cell help, J. Immunol., 185, 3436-3444 (2010)
[37] Cohen Stuart, J. W.; Hazenberg, M. D.; Hamann, D.; Otto, S. A.; Borleffs, J. C.; Miedema, F.; Boucher, C. A.; De Boer, R. J., The dominant source of CD \(4^+\) and CD \(8^+\) T-cell activation in HIV infection is antigenic stimulation, J. Acquir. Immune Defic. Syndr., 25, 203-211 (2000)
[38] Corbin, G. A.; Harty, J. T., Duration of infection and antigen display have minimal influence on the kinetics of the CD \(4^+\) T cell response to Listeria monocytogenes infection, J. Immunol., 173, 5679-5687 (2004)
[39] Davenport, M. P.; Ribeiro, R. M.; Chao, D. L.; Perelson, A. S., Predicting the impact of a nonsterilizing vaccine against human immunodeficiency virus, J. Virol., 78, 11340-11351 (2004)
[40] Davenport, M. P.; Zhang, L.; Bagchi, A.; Fridman, A.; Fu, T. M.; Schleif, W.; Shiver, J. W.; Ribeiro, R. M.; Perelson, A. S., High-potency human immunodeficiency virus vaccination leads to delayed and reduced CD \(8^+\) T-cell expansion but improved virus control, J. Virol., 79, 10059-10062 (2005)
[41] De Boer, R. J., Estimating the role of thymic output in HIV infection, Curr. Opin. HIV AIDS, 1, 16-21 (2006)
[42] De Boer, R. J., Which of our modeling predictions are robust?, PLoS Comput. Biol., 8, e1002593 (2012)
[43] De Boer, R. J.; Ganusov, V. V.; Milutinovic, D.; Hodgkin, P. D.; Perelson, A. S., Estimating lymphocyte division and death rates from CFSE data, Bull. Math. Biol., 68, 1011-1031 (2006) · Zbl 1334.92112
[44] De Boer, R. J.; Homann, D.; Perelson, A. S., Different dynamics of CD \(4^+\) and CD \(8^+\) T cell responses during and after acute lymphocytic choriomeningitis virus infection, J. Immunol., 171, 3928-3935 (2003)
[45] De Boer, R. J.; Mohri, H.; Ho, D. D.; Perelson, A. S., Estimating average cellular turnover from BrdU measurements, Proc. R. Soc. Lond. B Biol. Sci., 270, 849-858 (2003)
[46] De Boer, R. J.; Mohri, H.; Ho, D. D.; Perelson, A. S., Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques, J. Immunol., 170, 2479-2487 (2003)
[47] De Boer, R. J.; Noest, A. J., T cell renewal rates, telomerase, and telomere length shortening, J. Immunol., 160, 5832-5837 (1998)
[48] De Boer, R. J.; Oprea, M.; Antia, R.; Murali-Krishna, K.; Ahmed, R.; Perelson, A. S., Recruitment times, proliferation, and apoptosis rates during the CD \(8^+\) T-cell response to lymphocytic choriomeningitis virus, J. Virol., 75, 10663-10669 (2001)
[49] De Boer, R. J.; Perelson, A. S., How diverse should the immune system be?, Proc. R. Soc. Lond. B Biol. Sci., 252, 171-175 (1993)
[50] De Boer, R. J.; Perelson, A. S., Towards a general function describing T cell proliferation, J. Theor. Biol., 175, 567-576 (1995)
[51] De Boer, R. J.; Perelson, A. S., Estimating division and death rates from CFSE data, J. Comput. Appl. Math., 184, 140-164 (2005) · Zbl 1074.92016
[53] De Boer, R. J.; Perelson, A. S.; Ribeiro, R. M., Modelling deuterium labelling of lymphocytes with temporal and/or kinetic heterogeneity, J. R. Soc. Interface, 9, 2191-2200 (2012)
[54] Debacq, C.; Asquith, B.; Kerkhofs, P.; Portetelle, D.; Burny, A.; Kettmann, R.; Willems, L., Increased cell proliferation, but not reduced cell death, induces lymphocytosis in bovine leukemia virus-infected sheep, Proc. Natl. Acad. Sci. USA, 99, 10048-10053 (2002)
[55] Debacq, C.; Gillet, N.; Asquith, B.; Sanchez-Alcaraz, M. T.; Florins, A.; Boxus, M.; Schwartz-Cornil, I.; Bonneau, M.; Jean, G.; Kerkhofs, P.; Hay, J.; Thewis, A.; Kettmann, R.; Willems, L., Peripheral blood B-cell death compensates for excessive proliferation in lymphoid tissues and maintains homeostasis in bovine leukemia virus-infected sheep, J. Virol., 80, 9710-9719 (2006)
[56] Deenick, E. K.; Gett, A. V.; Hodgkin, P. D., Stochastic model of T cell proliferationa calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival, J. Immunol., 170, 4963-4972 (2003)
[57] Den Braber, I.; Mugwagwa, T.; Vrisekoop, N.; Westera, L.; Mogling, R.; De Boer, A. B.; Willems, N.; Schrijver, E. H.; Spierenburg, G.; Gaiser, K.; Mul, E.; Otto, S. A.; Ruiter, A. F.; Ackermans, M. T.; Miedema, F.; Borghans, J. A.; De Boer, R. J.; Tesselaar, K., Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans, Immunity, 36, 288-297 (2012)
[58] Di Mascio, M.; Sereti, I.; Matthews, L. T.; Natarajan, V.; Adelsberger, J.; Lempicki, R.; Yoder, C.; Jones, E.; Chow, C.; Metcalf, J. A.; Sidorov, I. A.; Dimitrov, D. S.; Polis, M. A.; Kovacs, J. A., Naive T-cell dynamics in human immunodeficiency virus type 1 infectioneffects of highly active antiretroviral therapy provide insights into the mechanisms of naive T-cell depletion, J. Virol., 80, 2665-2674 (2006)
[59] Diekmann, O.; Gyllenberg, M.; Huang, H.; Kirkilionis, M.; Metz, J. A.; Thieme, H. R., On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43, 157-189 (2001) · Zbl 1028.92019
[60] Dion, M. L.; Poulin, J. F.; Bordi, R.; Sylvestre, M.; Corsini, R.; Kettaf, N.; Dalloul, A.; Boulassel, M. R.; Debre, P.; Routy, J. P.; Grossman, Z.; Sekaly, R. P.; Cheynier, R., HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation, Immunity, 21, 757-768 (2004)
[61] Douek, D. C.; Betts, M. R.; Hill, B. J.; Little, S. J.; Lempicki, R.; Metcalf, J. A.; Casazza, J.; Yoder, C.; Adelsberger, J. W.; Stevens, R. A.; Baseler, M. W.; Keiser, P.; Richman, D. D.; Davey, R. T.; Koup, R. A., Evidence for increased T cell turnover and decreased thymic output in HIV infection, J. Immunol., 167, 6663-6668 (2001)
[62] Douek, D. C.; McFarland, R. D.; Keiser, P. H.; Gage, E. A.; Massey, J. M.; Haynes, B. F.; Polis, M. A.; Haase, A. T.; Feinberg, M. B.; Sullivan, J. L.; Jamieson, B. D.; Zack, J. A.; Picker, L. J.; Koup, R. A., Changes in thymic function with age and during the treatment of HIV infection, Nature, 396, 690-695 (1998)
[63] Douek, D. C.; Picker, L. J.; Koup, R. A., T cell dynamics in HIV-1 infection, Annu. Rev. Immunol., 21, 265-304 (2003)
[64] Douek, D. C.; Vescio, R. A.; Betts, M. R.; Brenchley, J. M.; Hill, B. J.; Zhang, L.; Berenson, J. R.; Collins, R. H.; Koup, R. A., Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution, Lancet, 355, 1875-1881 (2000)
[65] Dowling, M. R.; Milutinović, D.; Hodgkin, P. D., Modelling cell lifespan and proliferationis likelihood to die or to divide independent of age?, J. R. Soc. Interface, 2, 517-526 (2005)
[66] Duffy, K. R.; Hodgkin, P. D., Intracellular competition for fates in the immune system, Trends Cell Biol., 22, 457-464 (2012)
[67] Duffy, K. R.; Wellard, C. J.; Markham, J. F.; Zhou, J. H.; Holmberg, R.; Hawkins, E. D.; Hasbold, J.; Dowling, M. R.; Hodgkin, P. D., Activation-induced B cell fates are selected by intracellular stochastic competition, Science, 335, 338-341 (2012)
[68] Dutilh, B.; De Boer, R. J., Decline in excision circles is no evidence for homeostatic renewal of naive T cells, J. Theor. Biol., 224, 351-358 (2003) · Zbl 1464.92082
[69] Feinerman, O.; Jentsch, G.; Tkach, K. E.; Coward, J. W.; Hathorn, M. M.; Sneddon, M. W.; Emonet, T.; Smith, K. A.; Altan-Bonnet, G., Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response, Mol. Syst. Biol., 6, 437 (2010)
[70] Fink, P. J.; Hendricks, D. W., Post-thymic maturationyoung T cells assert their individuality, Nat. Rev. Immunol., 11, 544-549 (2011)
[71] Fleury, S.; De Boer, R. J.; Rizzardi, G. P.; Wolthers, K. C.; Otto, S. A.; Welbon, C. C.; Graziosi, C.; Knabenhans, C.; Soudeyns, H.; Bart, P. A.; Gallant, S.; Corpataux, J. M.; Gillet, M.; Meylan, P.; Schnyder, P.; Meuwly, J. Y.; Spreen, W.; Glauser, M. P.; Miedema, F.; Pantaleo, G., Limited CD \(4^+\) T-cell renewal in early HIV-1 infectioneffect of highly active antiretroviral therapy, Nat. Med., 4, 794-801 (1998)
[72] Florins, A.; Gillet, N.; Asquith, B.; Debacq, C.; Jean, G.; Schwartz-Cornil, I.; Bonneau, M.; Burny, A.; Reichert, M.; Kettmann, R.; Willems, L., Spleen-dependent turnover of CD11b peripheral blood B lymphocytes in bovine leukemia virus-infected sheep, J. Virol., 80, 11998-12008 (2006)
[73] Freitas, A. A.; Rocha, B., Population biology of lymphocytesthe flight for survival, Annu. Rev. Immunol., 18, 83-111 (2000)
[74] Ganusov, V. V., Discriminating between different pathways of memory CD \(8^+\) T cell differentiation, J. Immunol., 179, 5006-5013 (2007)
[75] Ganusov, V. V.; Barber, D. L.; De Boer, R. J., Killing of targets by CD8 T cells in the mouse spleen follows the law of mass action, PLoS One, 6, e15959 (2011)
[76] Ganusov, V. V.; Borghans, J. A.; De Boer, R. J., Explicit kinetic heterogeneitymathematical models for interpretation of deuterium labeling of heterogeneous cell populations, PLoS Comput. Biol., 6, e1000666 (2010)
[78] Ganusov, V. V.; Milutinovic, D.; De Boer, R. J., IL-2 regulates expansion of CD \(4^+\) T cell populations by affecting cell deathinsights from modeling CFSE data, J. Immunol., 179, 950-957 (2007)
[79] Ganusov, V. V.; Pilyugin, S. S.; De Boer, R. J.; Murali-Krishna, K.; Ahmed, R.; Antia, R., Quantifying cell turnover using CFSE data, J. Immunol. Methods, 298, 183-200 (2005)
[80] Gerlach, C.; Van Heijst, J. W.; Schumacher, T. N., The descent of memory T cells, Ann. N. Y. Acad. Sci., 1217, 139-153 (2011)
[81] Gett, A. V.; Hodgkin, P. D., A cellular calculus for signal integration by T cells, Nat. Immunol., 1, 239-244 (2000)
[82] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1977)
[83] Glauche, I.; Moore, K.; Thielecke, L.; Horn, K.; Loeffler, M.; Roeder, I., Stem cell proliferation and quiescence—two sides of the same coin, PLoS Comput. Biol., 5, e1000447 (2009)
[84] Grossman, Z.; Herberman, R. B.; Dimitrov, D. S., T cell turnover in SIV infection, Science, 284 (1999), 555a-555b
[85] Grossman, Z.; Meier-Schellersheim, M.; Sousa, A. E.; Victorino, R. M.; Paul, W. E., CD \(4^+\) T-cell depletion in HIV infectionare we closer to understanding the cause?, Nat. Med., 8, 319-323 (2002)
[86] Hairer, E., Solving Ordinary Differential Equations. I. Nonstiff Problems Springer Series in Computational Mathematics (1993), Springer: Springer Berlin · Zbl 0789.65048
[87] Hale, J. S.; Boursalian, T. E.; Turk, G. L.; Fink, P. J., Thymic output in aged mice, Proc. Natl. Acad. Sci. USA, 103, 8447-8452 (2006)
[88] Harley, C. B.; Futcher, A. B.; Greider, C. W., Telomeres shorten during ageing of human fibroblasts, Nature, 345, 458-460 (1990)
[89] Harris, J. M.; Hazenberg, M. D.; Poulin, J. F.; Higuera-Alhino, D.; Schmidt, D.; Gotway, M.; McCune, J. M., Multiparameter evaluation of human thymic functioninterpretations and caveats, Clin. Immunol., 115, 138-146 (2005)
[90] Hasbold, J.; Corcoran, L. M.; Tarlinton, D. M.; Tangye, S. G.; Hodgkin, P. D., Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation, Nat. Immunol., 5, 55-63 (2004)
[91] Hasbold, J.; Gett, A. V.; Rush, J. S.; Deenick, E.; Avery, D.; Jun, J.; Hodgkin, P. D., Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester, Immunol. Cell. Biol., 77, 516-522 (1999)
[92] Hasenauer, J.; Schittler, D.; Allgower, F., Analysis and simulation of division- and label-structured population modelsa new tool to analyze proliferation assays, Bull. Math. Biol., 74, 2692-2732 (2012) · Zbl 1362.92062
[93] Hataye, J.; Moon, J. J.; Khoruts, A.; Reilly, C.; Jenkins, M. K., Naive and memory CD \(4^+\) T cell survival controlled by clonal abundance, Science, 312, 114-116 (2006)
[94] Hawkins, E. D.; Hommel, M.; Turner, M. L.; Battye, F. L.; Markham, J. F.; Hodgkin, P. D., Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data, Nat. Protocol, 2, 2057-2067 (2007)
[95] Hawkins, E. D.; Markham, J. F.; McGuinness, L. P.; Hodgkin, P. D., A single-cell pedigree analysis of alternative stochastic lymphocyte fates, Proc. Natl. Acad. Sci. USA, 106, 13457-13462 (2009)
[96] Hawkins, E. D.; Turner, M. L.; Dowling, M. R.; Van Gend, C.; Hodgkin, P. D., A model of immune regulation as a consequence of randomized lymphocyte division and death times, Proc. Natl. Acad. Sci. USA, 104, 5032-5037 (2007)
[97] Hayflick, L., Why do we live so long?, Geriatrics, 43, 77-79 (1988)
[98] Hayflick, L., Antecedents of cell aging research, Exp. Gerontol., 24, 355-365 (1989)
[99] Hazenberg, M. D.; Borghans, J. A.; De Boer, R. J.; Miedema, F., Thymic outputa bad TREC record, Nat. Immunol., 4, 97-99 (2003)
[100] Hazenberg, M. D.; Cohen Stuart, J. W.; Otto, S. A.; Borleffs, J. C.; Boucher, C. A.; De Boer, R. J.; Miedema, F.; Hamann, D., T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activationa longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART), Blood, 95, 249-255 (2000)
[101] Hazenberg, M. D.; Hamann, D.; Schuitemaker, H.; Miedema, F., T cell depletion in HIV-1 infectionhow CD \(4^+\) T cells go out of stock, Nat. Immunol., 1, 285-289 (2000)
[102] Hazenberg, M. D.; Otto, S. A.; Stuart, J. W.; Verschuren, M. C.; Borleffs, J. C.; Boucher, C. A.; Coutinho, R. A.; Lange, J. M.; De Wit, T. F.; Tsegaye, A.; Van Dongen, J. J.; Hamann, D.; De Boer, R. J.; Miedema, F., Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection, Nat. Med., 6, 1036-1042 (2000)
[103] Hellerstein, M.; Hanley, M. B.; Cesar, D.; Siler, S.; Papageorgopoulos, C.; Wieder, E.; Schmidt, D.; Hoh, R.; Neese, R.; Macallan, D.; Deeks, S.; McCune, J. M., Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nat. Med., 5, 83-89 (1999)
[104] Hellerstein, M. K., Measurement of T-cell kineticsrecent methodologic advances, Immunol. Today, 20, 438-441 (1999)
[105] Hellerstein, M. K.; Hoh, R. A.; Hanley, M. B.; Cesar, D.; Lee, D.; Neese, R. A.; McCune, J. M., Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection, J. Clin. Invest., 112, 956-966 (2003)
[106] Hodes, R. J.; Hathcock, K. S.; Weng, N. P., Telomeres in T and B cells, Nat. Rev. Immunol., 2, 699-706 (2002)
[107] Homann, D.; Teyton, L.; Oldstone, M. B., Differential regulation of antiviral T-cell immunity results in stable CD \(8^+\) but declining CD \(4^+\) T-cell memory, Nat. Med., 7, 913-919 (2001)
[108] Hommel, M.; Hodgkin, P. D., TCR affinity promotes CD \(8^+\) T cell expansion by regulating survival, J. Immunol., 179, 2250-2260 (2007)
[109] Hou, C.; Zuo, W.; Moses, M. E.; Woodruff, W. H.; Brown, J. H.; West, G. B., Energy uptake and allocation during ontogeny, Science, 322, 736-739 (2008)
[110] Houston, E. G.; Higdon, L. E.; Fink, P. J., Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool, Proc. Natl. Acad. Sci. USA, 108, 5366-5371 (2011)
[111] Huang, J. F.; Yang, Y.; Sepulveda, H.; Shi, W.; Hwang, I.; Peterson, P. A.; Jackson, M. R.; Sprent, J.; Cai, Z., TCR-Mediated internalization of peptide-MHC complexes acquired by T cells, Science, 286, 952-954 (1999)
[112] Hunt, P. W.; Brenchley, J.; Sinclair, E.; McCune, J. M.; Roland, M.; Page-Shafer, K.; Hsue, P.; Emu, B.; Krone, M.; Lampiris, H.; Douek, D.; Martin, J. N.; Deeks, S. G., Relationship between T cell activation and CD \(4^+\) T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy, J. Infect. Dis., 197, 126-133 (2008)
[113] Hwang, I.; Ki, D., Receptor-mediated T cell absorption of antigen presenting cell-derived molecules, Front. Biosci., 16, 411-421 (2011)
[114] Hyrien, O.; Chen, R.; Mayer-Proschel, M.; Noble, M., Saddlepoint approximations to the moments of multitype age-dependent branching processes, with applications, Biometrics, 66, 567-577 (2010) · Zbl 1192.62225
[115] Hyrien, O.; Chen, R.; Zand, M. S., An age-dependent branching process model for the analysis of CFSE-labeling experiments, Biol. Dir., 5, 41 (2010)
[116] Hyrien, O.; Mayer-Proschel, M.; Noble, M.; Yakovlev, A., A stochastic model to analyze clonal data on multi-type cell populations, Biometrics, 61, 199-207 (2005) · Zbl 1077.62110
[117] Hyrien, O.; Zand, M. S., A mixture model with dependent observations for the analysis of CFSE-labeling experiments, J. Am. Stat. Assoc., 103, 222-239 (2008) · Zbl 1471.62508
[118] Jamieson, B. D.; Douek, D. C.; Killian, S.; Hultin, L. E.; Scripture-Adams, D. D.; Giorgi, J. V.; Marelli, D.; Koup, R. A.; Zack, J. A., Generation of functional thymocytes in the human adult, Immunity, 10, 569-575 (1999)
[119] Jones, L. E.; Perelson, A. S., Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART, Bull. Math. Biol., 67, 1227-1251 (2005) · Zbl 1334.92407
[120] Kaech, S. M.; Ahmed, R., Memory CD \(8^+\) T cell differentiationinitial antigen encounter triggers a developmental program in naive cells, Nat. Immunol., 2, 415-422 (2001)
[121] Kaur, A.; Di Mascio, M.; Barabasz, A.; Rosenzweig, M.; McClure, H. M.; Perelson, A. S.; Ribeiro, R. M.; Johnson, R. P., Dynamics of T- and B-lymphocyte turnover in a natural host of simian immunodeficiency virus, J. Virol., 82, 1084-1093 (2008)
[122] Kedl, R. M.; Schaefer, B. C.; Kappler, J. W.; Marrack, P., T cells down-modulate peptide-MHC complexes on APCs in vivo, Nat. Immunol., 3, 27-32 (2002)
[123] Kiel, M. J.; He, S.; Ashkenazi, R.; Gentry, S. N.; Teta, M.; Kushner, J. A.; Jackson, T. L.; Morrison, S. J., Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU, Nature, 449, 238-242 (2007)
[124] Kilpatrick, R. D.; Rickabaugh, T.; Hultin, L. E.; Hultin, P.; Hausner, M. A.; Detels, R.; Phair, J.; Jamieson, B. D., Homeostasis of the naive CD \(4^+\) T cell compartment during aging, J. Immunol., 180, 1499-1507 (2008)
[125] Kimmig, S.; Przybylski, G. K.; Schmidt, C. A.; Laurisch, K.; Mowes, B.; Radbruch, A.; Thiel, A., Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood, J. Exp. Med., 195, 789-794 (2002)
[126] Ko, K. H.; Odell, R.; Nordon, R. E., Analysis of cell differentiation by division tracking cytometry, Cytometry A, 71, 773-782 (2007)
[127] Koch, A. L.; Schaechter, M., A model for statistics of the cell division process, J. Gen. Microbiol., 29, 435-454 (1962)
[128] Kohler, B., Mathematically modeling dynamics of T cell responsespredictions concerning the generation of memory cells, J. Theor. Biol., 245, 669-676 (2007) · Zbl 1451.92098
[129] Kohlmeier, J. E.; Reiley, W. W.; Perona-Wright, G.; Freeman, M. L.; Yager, E. J.; Connor, L. M.; Brincks, E. L.; Cookenham, T.; Roberts, A. D.; Burkum, C. E.; Sell, S.; Winslow, G. M.; Blackman, M. A.; Mohrs, M.; Woodland, D. L., Inflammatory chemokine receptors regulate CD \(8^+\) T cell contraction and memory generation following infection, J. Exp. Med., 208, 1621-1634 (2011)
[130] Kong, F.; Chen, C. H.; Cooper, M. D., Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation, Immunity, 8, 97-104 (1998)
[131] Kotturi, M. F.; Scott, I.; Wolfe, T.; Peters, B.; Sidney, J.; Cheroutre, H.; Von Herrath, M. G.; Buchmeier, M. J.; Grey, H.; Sette, A., Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD \(8^+\) T cell immunodominance, J. Immunol., 181, 2124-2133 (2008)
[132] Kovacs, J. A.; Lempicki, R. A.; Sidorov, I. A.; Adelsberger, J. W.; Herpin, B.; Metcalf, J. A.; Sereti, I.; Polis, M. A.; Davey, R. T.; Tavel, J.; Falloon, J.; Stevens, R.; Lambert, L.; Dewar, R.; Schwartzentruber, D. J.; Anver, M. R.; Baseler, M. W.; Masur, H.; Dimitrov, D. S.; Lane, H. C., Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV, J. Exp. Med., 194, 1731-1741 (2001)
[133] Kovacs, J. A.; Lempicki, R. A.; Sidorov, I. A.; Adelsberger, J. W.; Sereti, I.; Sachau, W.; Kelly, G.; Metcalf, J. A.; Davey, R. T.; Falloon, J.; Polis, M. A.; Tavel, J.; Stevens, R.; Lambert, L.; Hosack, D. A.; Bosche, M.; Issaq, H. J.; Fox, S. D.; Leitman, S.; Baseler, M. W.; Masur, H.; Di Mascio, M.; Dimitrov, D. S.; Lane, H. C., Induction of prolonged survival of CD \(4^+\) T lymphocytes by intermittent IL-2 therapy in HIV-infected patients, J. Clin. Invest., 115, 2139-2148 (2005)
[134] Ladell, K.; Hellerstein, M. K.; Cesar, D.; Busch, R.; Boban, D.; McCune, J. M., Central memory CD \(8^+\) T cells appear to have a shorter lifespan and reduced abundance as a function of HIV disease progression, J. Immunol., 180, 7907-7918 (2008)
[135] Lau, L. L.; Jamieson, B. D.; Somasundaram, T.; Ahmed, R., Cytotoxic T-cell memory without antigen, Nature, 369, 648-652 (1994)
[136] Lee, H. Y.; Hawkins, E.; Zand, M. S.; Mosmann, T.; Wu, H.; Hodgkin, P. D.; Perelson, A. S., Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models, Bull. Math. Biol., 71, 1649-1670 (2009) · Zbl 1173.92011
[137] Lee, H. Y.; Perelson, A. S., Modeling T cell proliferation and death in vitro based on labeling datageneralizations of the Smith-Martin cell cycle model, Bull. Math. Biol., 70, 21-44 (2008) · Zbl 1281.92020
[138] Lempicki, R. A.; Kovacs, J. A.; Baseler, M. W.; Adelsberger, J. W.; Dewar, R. L.; Natarajan, V.; Bosche, M. C.; Metcalf, J. A.; Stevens, R. A.; Lambert, L. A.; Alvord, W. G.; Polis, M. A.; Davey, R. T.; Dimitrov, D. S.; Lane, H. C., Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD \(4^+\) and CD \(8^+\) T cell turnover in HIV-infected patients, Proc. Natl. Acad. Sci. USA, 97, 13778-13783 (2000)
[139] Leon, K.; Faro, J.; Carneiro, J., A general mathematical framework to model generation structure in a population of asynchronously dividing cells, J. Theor. Biol., 229, 455-476 (2004) · Zbl 1440.92013
[140] Lewin, S. R.; Ribeiro, R. M.; Kaufmann, G. R.; Smith, D.; Zaunders, J.; Law, M.; Solomon, A.; Cameron, P. U.; Cooper, D.; Perelson, A. S., Dynamics of T cells and TCR excision circles differ after treatment of acute and chronic HIV infection, J. Immunol., 169, 4657-4666 (2002)
[141] Linderkamp, O.; Versmold, H. T.; Riegel, K. P.; Betke, K., Estimation and prediction of blood volume in infants and children, Eur. J. Pediatr., 125, 227-234 (1977)
[142] Linskens, M. H.; Harley, C. B.; West, M. D.; Campisi, J.; Hayflick, L., Replicative senescence and cell death, Science, 267, 17 (1995)
[143] Luzyanina, T.; Mrusek, S.; Edwards, J. T.; Roose, D.; Ehl, S.; Bocharov, G., Computational analysis of CFSE proliferation assay, J. Math. Biol., 54, 57-89 (2007) · Zbl 1113.92021
[144] Luzyanina, T.; Roose, D.; Schenkel, T.; Sester, M.; Ehl, S.; Meyerhans, A.; Bocharov, G., Numerical modelling of label-structured cell population growth using CFSE distribution data, Theor. Biol. Med. Model., 4, 26 (2007)
[145] Lyons, A. B., Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution, J. Immunol. Methods, 243, 147-154 (2000)
[146] Lyons, A. B.; Hasbold, J.; Hodgkin, P. D., Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe, Methods Cell. Biol., 63, 375-398 (2001)
[147] Ma, C. S.; Hodgkin, P. D.; Tangye, S. G., Automatic generation of lymphocyte heterogeneitydivision-dependent changes in the expression of CD27, CCR7 and CD45 by activated human naive CD \(4^+\) T cells are independently regulated, Immunol. Cell Biol., 82, 67-74 (2004)
[148] Macallan, D. C.; Asquith, B.; Irvine, A. J.; Wallace, D. L.; Worth, A.; Ghattas, H.; Zhang, Y.; Griffin, G. E.; Tough, D. F.; Beverley, P. C., Measurement and modeling of human T cell kinetics, Eur. J. Immunol., 33, 2316-2326 (2003)
[149] Macallan, D. C.; Fullerton, C. A.; Neese, R. A.; Haddock, K.; Park, S. S.; Hellerstein, M. K., Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucosestudies in vitro, in animals, and in humans, Proc. Natl. Acad. Sci. USA, 95, 708-713 (1998)
[150] Macallan, D. C.; Wallace, D.; Zhang, Y.; De Lara, C.; Worth, A. T.; Ghattas, H.; Griffin, G. E.; Beverley, P. C.; Tough, D. F., Rapid turnover of effector-memory CD \(4^+\) T cells in healthy humans, J. Exp. Med., 200, 255-260 (2004)
[151] Macallan, D. C.; Wallace, D. L.; Irvine, A. J.; Asquith, B.; Worth, A.; Ghattas, H.; Zhang, Y.; Griffin, G. E.; Tough, D. F.; Beverley, P. C., Rapid turnover of T cells in acute infectious mononucleosis, Eur. J. Immunol., 33, 2655-2665 (2003)
[152] Markham, J. F.; Wellard, C. J.; Hawkins, E. D.; Duffy, K. R.; Hodgkin, P. D., A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes, J. R. Soc. Interface, 7, 1049-1059 (2010)
[153] Marquardt, D. W., Finite difference algorithm for curve fitting, J. Soc. Ind. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[154] Masopust, D.; Choo, D.; Vezys, V.; Wherry, E. J.; Duraiswamy, J.; Akondy, R.; Wang, J.; Casey, K. A.; Barber, D. L.; Kawamura, K. S.; Fraser, K. A.; Webby, R. J.; Brinkmann, V.; Butcher, E. C.; Newell, K. A.; Ahmed, R., Dynamic T cell migration program provides resident memory within intestinal epithelium, J. Exp. Med., 207, 553-564 (2010)
[155] Matloubian, M.; Kolhekar, S. R.; Somasundaram, T.; Ahmed, R., Molecular determinants of macrophage tropism and viral persistenceimportance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus, J. Virol., 67, 7340-7349 (1993)
[156] Matloubian, M.; Somasundaram, T.; Kolhekar, S. R.; Selvakumar, R.; Ahmed, R., Genetic basis of viral persistencesingle amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice, J. Exp. Med., 172, 1043-1048 (1990)
[157] McCune, J. M.; Hanley, M. B.; Cesar, D.; Halvorsen, R.; Hoh, R.; Schmidt, D.; Wieder, E.; Deeks, S.; Siler, S.; Neese, R.; Hellerstein, M., Factors influencing T-cell turnover in HIV-1-seropositive patients, J. Clin. Invest., 105, R1-R8 (2000)
[158] Miao, H.; Jin, X.; Perelson, A. S.; Wu, H., Evaluation of multitype mathematical models for CFSE-labeling experiment data, Bull. Math. Biol., 74, 300-326 (2012) · Zbl 1317.92028
[159] Michie, C. A.; McLean, A.; Alcock, C.; Beverley, P. C., Lifespan of human lymphocyte subsets defined by CD45 isoforms, Nature, 360, 264-265 (1992)
[160] Miller, N. E.; Bonczyk, J. R.; Nakayama, Y.; Suresh, M., Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection, J. Virol., 79, 9419-9429 (2005)
[161] Milutinović, D.; De Boer, R. J., Process noisean explanation for the fluctuations in the immune response during acute viral infection, Biophys. J., 92, 3358-3367 (2007)
[162] Mohri, H.; Bonhoeffer, S.; Monard, S.; Perelson, A. S.; Ho, D. D., Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279, 1223-1227 (1998)
[163] Mohri, H.; Perelson, A. S.; Tung, K.; Ribeiro, R. M.; Ramratnam, B.; Markowitz, M.; Kost, R.; Hurley, A.; Weinberger, L.; Cesar, D.; Hellerstein, M. K.; Ho, D. D., Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy, J. Exp. Med., 194, 1277-1288 (2001)
[164] Moon, J. J.; Chu, H. H.; Pepper, M.; McSorley, S. J.; Jameson, S. C.; Kedl, R. M.; Jenkins, M. K., Naive CD \(4(^+)\) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude, Immunity, 27, 203-213 (2007)
[165] Naylor, K.; Li, G.; Vallejo, A. N.; Lee, W. W.; Koetz, K.; Bryl, E.; Witkowski, J.; Fulbright, J.; Weyand, C. M.; Goronzy, J. J., The influence of age on T cell generation and TCR diversity, J. Immunol., 174, 7446-7452 (2005)
[166] Neese, R. A.; Misell, L. M.; Turner, S.; Chu, A.; Kim, J.; Cesar, D.; Hoh, R.; Antelo, F.; Strawford, A.; McCune, J. M.; Christiansen, M.; Hellerstein, M. K., Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA, Proc. Natl. Acad. Sci. USA, 99, 15345-15350 (2002)
[167] Nolz, J. C.; Rai, D.; Badovinac, V. P.; Harty, J. T., Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells, Proc. Natl. Acad. Sci. USA, 109, 6199-6204 (2012)
[168] Nordon, R. E.; Nakamura, M.; Ramirez, C.; Odell, R., Analysis of growth kinetics by division tracking, Immunol. Cell. Biol., 77, 523-529 (1999)
[169] Nowak, M. A.; Bangham, C. R., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[170] Nowak, M. A.; May, R. M., Virus Dynamics. Mathematical Principles of Immunology and Virology (2000), Oxford UP: Oxford UP Oxford · Zbl 1101.92028
[171] O’Connell, K. A.; Bailey, J. R.; Blankson, J. N., Elucidating the elitemechanisms of control in HIV-1 infection, Trends Pharmacol. Sci., 30, 631-637 (2009)
[172] Okoye, A.; Meier-Schellersheim, M.; Brenchley, J. M.; Hagen, S. I.; Walker, J. M.; Rohankhedkar, M.; Lum, R.; Edgar, J. B.; Planer, S. L.; Legasse, A.; Sylwester, A. W.; Piatak, M.; Lifson, J. D.; Maino, V. C.; Sodora, D. L.; Douek, D. C.; Axthelm, M. K.; Grossman, Z.; Picker, L. J., Progressive CD \(4^+\) central memory T cell decline results in CD \(4^+\) effector memory insufficiency and overt disease in chronic SIV infection, J. Exp. Med., 204, 2171-2185 (2007)
[173] Palmer, L. D.; Weng, N.; Levine, B. L.; June, C. H.; Lane, H. C.; Hodes, R. J., Telomere length, telomerase activity, and replicative potential in HIV infectionanalysis of CD \(4^+\) and CD \(8^+\) T cells from HIV-discordant monozygotic twins, J. Exp. Med., 185, 1381-1386 (1997)
[174] Pandrea, I.; Ribeiro, R. M.; Gautam, R.; Gaufin, T.; Pattison, M.; Barnes, M.; Monjure, C.; Stoulig, C.; Dufour, J.; Cyprian, W.; Silvestri, G.; Miller, M. D.; Perelson, A. S.; Apetrei, C., Simian immunodeficiency virus SIVagm dynamics in African green monkeys, J. Virol., 82, 3713-3724 (2008)
[175] Parish, C. R.; Glidden, M. H.; Quah, B. J.; Warren, H. S., Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation, Curr. Protoc. Immunol., 4, 4.9.1-4.9.13 (2009)
[176] Parretta, E.; Cassese, G.; Santoni, A.; Guardiola, J.; Vecchio, A.; Di Rosa, F., Kinetics of in vivo proliferation and death of memory and naive CD8 T cellsparameter estimation based on \(5 - \operatorname{bromo} - 2 \prime - \operatorname{deoxyuridine}\) incorporation in spleen, lymph nodes, and bone marrow, J. Immunol., 180, 7230-7239 (2008)
[177] Perelson, A. S.; Bonhoeffer, S.; Mohri, H.; Ho, D., T cell turnover in SIV infection, Science, 284 (1999), 555b-555d
[178] Perelson, A. S.; Wiegel, F. W., Scaling aspects of lymphocyte trafficking, J. Theor. Biol., 257, 9-16 (2009) · Zbl 1400.92078
[179] Pillay, J.; Den Braber, I.; Vrisekoop, N.; Kwast, L. M.; De Boer, R. J.; Borghans, J. A.; Tesselaar, K.; Koenderman, L., In vivo labeling with \(^2 H_2O\) reveals a human neutrophil lifespan of 5.4 days, Blood, 116, 625-627 (2010)
[180] Pilyugin, S.; Mittler, J.; Antia, R., Modeling T-cell proliferationan investigation of the consequences of the Hayflick limit, J. Theor. Biol., 186, 117-129 (1997)
[181] Pilyugin, S. S.; Ganusov, V. V.; Murali-Krishna, K.; Ahmed, R.; Antia, R., The rescaling method for quantifying the turnover of cell populations, J. Theor. Biol., 225, 275-283 (2003) · Zbl 1464.92089
[182] Pitcher, C. J.; Hagen, S. I.; Walker, J. M.; Lum, R.; Mitchell, B. L.; Maino, V. C.; Axthelm, M. K.; Picker, L. J., Development and homeostasis of T cell memory in rhesus macaque, J. Immunol., 168, 29-43 (2002)
[183] Quah, B. J.; Warren, H. S.; Parish, C. R., Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester, Nat. Protocol, 2, 2049-2056 (2007)
[184] Quiel, J.; Caucheteux, S.; Laurence, A.; Singh, N. J.; Bocharov, G.; Ben-Sasson, S. Z.; Grossman, Z.; Paul, W. E., Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number, Proc. Natl. Acad. Sci. USA, 108, 3312-3317 (2011)
[185] Raue, H. P.; Slifka, M. K., CD \(8^+\) T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation, Virology, 390, 197-204 (2009)
[186] Revy, P.; Sospedra, M.; Barbour, B.; Trautmann, A., Functional antigen-independent synapses formed between T cells and dendritic cells, Nat. Immunol., 2, 925-931 (2001)
[187] Ribeiro, R. M.; De Boer, R. J., The contribution of the thymus to the recovery of peripheral naive T-cell numbers during antiretroviral treatment for HIV infection, J. Acquir. Immune Defic. Syndr., 49, 1-8 (2008)
[188] Ribeiro, R. M.; Mohri, H.; Ho, D. D.; Perelson, A. S., In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infectionwhy are CD \(4^+\) but not CD \(8^+\) T cells depleted?, Proc. Natl. Acad. Sci. USA, 99, 15572-15577 (2002)
[189] Ribeiro, R. M.; Mohri, H.; Ho, D. D.; Perelson, A. S., Modeling deuterated glucose labeling of T-lymphocytes, Bull. Math. Biol., 64, 385-405 (2002) · Zbl 1334.92208
[190] Roederer, M.; Dubs, J. G.; Anderson, M. T.; Raju, P. A.; Herzenberg, L. A.; Herzenberg, L. A., CD8 naive T cell counts decrease progressively in HIV-infected adults, J. Clin. Invest., 95, 2061-2066 (1995)
[191] Rouzine, I. M.; Coffin, J. M., T cell turnover in SIV infection, Science, 284, 555b (1999)
[192] Rufer, N.; Brummendorf, T. H.; Kolvraa, S.; Bischoff, C.; Christensen, K.; Wadsworth, L.; Schulzer, M.; Lansdorp, P. M., Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood, J. Exp. Med., 190, 157-168 (1999)
[193] Sachsenberg, N.; Perelson, A. S.; Yerly, S.; Schockmel, G. A.; Leduc, D.; Hirschel, B.; Perrin, L., Turnover of CD \(4^+\) and CD \(8^+\) T lymphocytes in HIV-1 infection as measured by Ki-67 antigen, J. Exp. Med., 187, 1295-1303 (1998)
[195] Silvestri, G.; Fedanov, A.; Germon, S.; Kozyr, N.; Kaiser, W. J.; Garber, D. A.; McClure, H.; Feinberg, M. B.; Staprans, S. I., Divergent host responses during primary simian immunodeficiency virus SIVsm infection of natural sooty mangabey and nonnatural rhesus macaque hosts, J. Virol., 79, 4043-4054 (2005)
[196] Silvestri, G.; Sodora, D. L.; Koup, R. A.; Paiardini, M.; O’Neil, S. P.; McClure, H. M.; Staprans, S. I.; Feinberg, M. B., Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia, Immunity, 18, 441-452 (2003)
[197] Slifka, M. K.; Whitton, J. L., Functional avidity maturation of CD \(8(^+)\) T cells without selection of higher affinity TCR, Nat. Immunol., 2, 711-717 (2001)
[198] Smith, J. A.; Martin, L., Do cells cycle?, Proc. Natl. Acad. Sci. USA, 70, 1263-1267 (1973)
[199] Soares, A.; Govender, L.; Hughes, J.; Mavakla, W.; De Kock, M.; Barnard, C.; Pienaar, B.; Janse van Rensburg, E.; Jacobs, G.; Khomba, G.; Stone, L.; Abel, B.; Scriba, T. J.; Hanekom, W. A., Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation, J. Immunol. Methods, 362, 43-50 (2010)
[200] Speirs, C.; Van Nimwegen, E.; Bolton, D.; Zavolan, M.; Duvall, M.; Angleman, S.; Siegel, R.; Perelson, A. S.; Lenardo, M. J., Analysis of human immunodeficiency virus cytopathicity by using a new method for quantitating viral dynamics in cell culture, J. Virol., 79, 4025-4032 (2005)
[202] Srinivasula, S.; Lempicki, R. A.; Adelsberger, J. W.; Huang, C. Y.; Roark, J.; Lee, P. I.; Rupert, A.; Stevens, R.; Sereti, I.; Lane, H. C.; Di Mascio, M.; Kovacs, J. A., Differential effects of HIV viral load and CD4 count on proliferation of naive and memory CD4 and CD8 T lymphocytes, Blood, 118, 262-270 (2011)
[203] Steinmann, G. G.; Klaus, B.; Muller-Hermelink, H. K., The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study, Scand. J. Immunol., 22, 563-575 (1985)
[204] Subramanian, V. G.; Duffy, K. R.; Turner, M. L.; Hodgkin, P. D., Determining the expected variability of immune responses using the cyton model, J. Math. Biol., 56, 861-892 (2008) · Zbl 1206.92013
[205] Takizawa, H.; Regoes, R. R.; Boddupalli, C. S.; Bonhoeffer, S.; Manz, M. G., Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation, J. Exp. Med., 208, 273-284 (2011)
[206] Tokoyoda, K.; Hauser, A. E.; Nakayama, T.; Radbruch, A., Organization of immunological memory by bone marrow stroma, Nat. Rev. Immunol., 10, 193-200 (2010)
[207] Tokoyoda, K.; Zehentmeier, S.; Chang, H. D.; Radbruch, A., Organization and maintenance of immunological memory by stroma niches, Eur. J. Immunol., 39, 2095-2099 (2009)
[208] Tokoyoda, K.; Zehentmeier, S.; Hegazy, A. N.; Albrecht, I.; Grun, J. R.; Lohning, M.; Radbruch, A., Professional memory CD \(4^+\) T lymphocytes preferentially reside and rest in the bone marrow, Immunity, 30, 721-730 (2009)
[209] Tough, D. F.; Sprent, J., Turnover of naive- and memory-phenotype T cells, J. Exp. Med., 179, 1127-1135 (1994)
[210] Tough, D. F.; Sprent, J., Lifespan of \(\gamma / \delta\) T cells, J. Exp. Med., 187, 357-365 (1998)
[211] Turnbull, E. L.; Wong, M.; Wang, S.; Wei, X.; Jones, N. A.; Conrod, K. E.; Aldam, D.; Turner, J.; Pellegrino, P.; Keele, B. F.; Williams, I.; Shaw, G. M.; Borrow, P., Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection, J. Immunol., 182, 7131-7145 (2009)
[212] Turner, M. L.; Hawkins, E. D.; Hodgkin, P. D., Quantitative regulation of B cell division destiny by signal strength, J. Immunol., 181, 374-382 (2008)
[213] Van den Dool, C.; De Boer, R. J., The effects of age, thymectomy, and HIV infection on \(\alpha\) and \(\beta\) TCR excision circles in naive T cells, J. Immunol., 177, 4391-4401 (2006)
[214] Van Gent, R.; Kater, A. P.; Otto, S. A.; Jaspers, A.; Borghans, J. A.; Vrisekoop, N.; Ackermans, M. A.; Ruiter, A. F.; Wittebol, S.; Eldering, E.; Van Oers, M. H.; Tesselaar, K.; Kersten, M. J.; Miedema, F., In vivo dynamics of stable chronic lymphocytic leukemia inversely correlate with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow, Cancer Res., 68, 10137-10144 (2008)
[215] Van Heijst, J. W.; Gerlach, C.; Swart, E.; Sie, D.; Nunes-Alves, C.; Kerkhoven, R. M.; Arens, R.; Correia-Neves, M.; Schepers, K.; Schumacher, T. N., Recruitment of antigen-specific CD \(8^+\) T cells in response to infection is markedly efficient, Science, 325, 1265-1269 (2009)
[216] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry (1992), North-Holland Publishing: North-Holland Publishing Amsterdam · Zbl 0511.60038
[217] Van Stipdonk, M. J.; Lemmens, E. E.; Schoenberger, S. P., Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat. Immunol., 2, 423-429 (2001)
[218] Vaziri, H.; Dragowska, W.; Allsopp, R. C.; Thomas, T. E.; Harley, C. B.; Lansdorp, P. M., Evidence for a mitotic clock in human hematopoietic stem cellsloss of telomeric DNA with age, Proc. Natl. Acad. Sci. USA, 91, 9857-9860 (1994)
[219] Veiga-Fernandes, H.; Walter, U.; Bourgeois, C.; McLean, A.; Rocha, B., Response of naive and memory CD \(8^+\) T cells to antigen stimulation in vivo, Nat. Immunol., 1, 47-53 (2000)
[220] Vella, A. T.; Dow, S.; Potter, T. A.; Kappler, J.; Marrack, P., Cytokine-induced survival of activated T cells in vitro and in vivo, Proc. Natl. Acad. Sci. USA, 95, 3810-3815 (1998)
[221] Von Boehmer, H.; Hafen, K., The life span of naive \(\alpha / \beta\) T cells in secondary lymphoid organs, J. Exp. Med., 177, 891-896 (1993)
[222] Voogt, J. N.; Awada, M.; Murphy, E. J.; Hayes, G. M.; Busch, R.; Hellerstein, M. K., Measurement of very low rates of cell proliferation by heavy water labeling of DNA and gas chromatography/pyrolysis/isotope ratio-mass spectrometric analysis, Nat. Protocol, 2, 3058-3062 (2007)
[223] Vrisekoop, N.; Den Braber, I.; De Boer, A. B.; Ruiter, A. F.; Ackermans, M. T.; Van der Crabben, S. N.; Schrijver, E. H.; Spierenburg, G.; Sauerwein, H. P.; Hazenberg, M. D.; De Boer, R. J.; Miedema, F.; Borghans, J. A.; Tesselaar, K., Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool, Proc. Natl. Acad. Sci. USA, 105, 6115-6120 (2008)
[225] Wallace, D. L.; Zhang, Y.; Ghattas, H.; Worth, A.; Irvine, A.; Bennett, A. R.; Griffin, G. E.; Beverley, P. C.; Tough, D. F.; Macallan, D. C., Direct measurement of T cell subset kinetics in vivo in elderly men and women, J. Immunol., 173, 1787-1794 (2004)
[226] Wellard, C.; Markham, J.; Hawkins, E. D.; Hodgkin, P. D., The effect of correlations on the population dynamics of lymphocytes, J. Theor. Biol., 264, 443-449 (2010) · Zbl 1406.92164
[227] Wells, A. D.; Gudmundsdottir, H.; Turka, L. A., Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response, J. Clin. Invest., 100, 3173-3183 (1997)
[228] Weng, N.; Levine, B. L.; June, C. H.; Hodes, R. J., Regulation of telomerase RNA template expression in human T lymphocyte development and activation, J. Immunol., 158, 3215-3220 (1997)
[229] Weng, N. P.; Levine, B. L.; June, C. H.; Hodes, R. J., Human naive and memory T lymphocytes differ in telomeric length and replicative potential, Proc. Natl. Acad. Sci. USA, 92, 11091-11094 (1995)
[230] Weng, N. P.; Palmer, L. D.; Levine, B. L.; Lane, H. C.; June, C. H.; Hodes, R. J., Tales of tailsregulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging, Immunol. Rev., 160, 43-54 (1997)
[232] Wetzel, S. A.; McKeithan, T. W.; Parker, D. C., Peptide-specific intercellular transfer of MHC class II to CD \(4^+\) T cells directly from the immunological synapse upon cellular dissociation, J. Immunol., 174, 80-89 (2005)
[233] Wetzel, S. A.; Parker, D. C., MHC transfer from APC to T cells following antigen recognition, Crit. Rev. Immunol., 26, 1-21 (2006)
[234] Wiegel, F. W.; Perelson, A. S., Some scaling principles for the immune system, Immunol. Cell Biol., 82, 127-131 (2004)
[235] Williams, M. A.; Bevan, M. J., Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells, J. Immunol., 173, 6694-6702 (2004)
[236] Willis, R. A.; Kappler, J. W.; Marrack, P. C., CD8 T cell competition for dendritic cells in vivo is an early event in activation, Proc. Natl. Acad. Sci. USA, 103, 12063-12068 (2006)
[237] Wilson, A.; Laurenti, E.; Oser, G.; Van der Wath, R. C.; Blanco-Bose, W.; Jaworski, M.; Offner, S.; Dunant, C. F.; Eshkind, L.; Bockamp, E.; Lio, P.; Macdonald, H. R.; Trumpp, A., Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell, 135, 1118-1129 (2008)
[238] Wolthers, K. C.; Noest, A. J.; Otto, S. A.; Miedema, F.; De Boer, R. J., Normal telomere lengths in naive and memory CD \(4^+\) T cells in HIV type 1 infectiona mathematical interpretation, AIDS Res. Hum. Retroviruses, 15, 1053-1062 (1999)
[239] Wolthers, K. C.; Wisman, G. B.A.; Otto, S. A.; De Roda Husman, A. M.; Schaft, N.; De Wolf, F.; Goudsmit, J.; Coutinho, R. A.; Van der Zee, A. G.; Meyaard, L.; Miedema, F., T cell telomere length in HIV-1 infectionno evidence for increased CD \(4^+\) T cell turnover, Science, 274, 1543-1547 (1996)
[240] Yarke, C. A.; Dalheimer, S. L.; Zhang, N.; Catron, D. M.; Jenkins, M. K.; Mueller, D. L., Proliferating CD \(4^+\) T cells undergo immediate growth arrest upon cessation of TCR signaling in vivo, J. Immunol., 180, 156-162 (2008)
[241] Yates, A.; Chan, C.; Strid, J.; Moon, S.; Callard, R.; George, A. J.; Stark, J., Reconstruction of cell population dynamics using CFSE, BMC Bioinf., 8, 196 (2007)
[242] Yates, A.; Saini, M.; Mathiot, A.; Seddon, B., Mathematical modeling reveals the biological program regulating lymphopenia-induced proliferation, J. Immunol., 180, 1414-1422 (2008)
[243] Ye, P.; Kirschner, D. E., Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants, J. Immunol., 168, 4968-4979 (2002)
[244] Younes, S. A.; Punkosdy, G.; Caucheteux, S.; Chen, T.; Grossman, Z.; Paul, W. E., Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells, PLoS Biol., 9, e1001171 (2011)
[245] Zand, M. S.; Briggs, B. J.; Bose, A.; Vo, T., Discrete event modeling of CD \(4^+\) memory T cell generation, J. Immunol., 173, 3763-3772 (2004)
[246] Zehn, D.; Lee, S. Y.; Bevan, M. J., Complete but curtailed T-cell response to very low-affinity antigen, Nature, 458, 211-214 (2009)
[247] Zhang, Z. Q.; Notermans, D. W.; Sedgewick, G.; Cavert, W.; Wietgrefe, S.; Zupancic, M.; Gebhard, K.; Henry, K.; Boies, L.; Chen, Z.; Jenkins, M.; Mills, R.; McDade, H.; Goodwin, C.; Schuwirth, C. M.; Danner, S. A.; Haase, A. T., Kinetics of CD \(4^+\) T cell repopulation of lymphoid tissues after treatment of HIV-1 infection, Proc. Natl. Acad. Sci. USA, 95, 1154-1159 (1998)
[248] Zilman, A.; Ganusov, V. V.; Perelson, A. S., Stochastic models of lymphocyte proliferation and death, PLoS One, 5, e12775 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.