×

A stochastic model to analyze clonal data on multi-type cell populations. (English) Zbl 1077.62110

Summary: This article presents a stochastic model designed to analyze experimental data on the development of cell clones composed of two (or more) distinct types of cells. The proposed model is an extension of the traditional multi-type Bellman-Harris branching stochastic process allowing for nonidentical time-to-transformation distributions defined for different cell types. A simulated pseudo likelihood method has been developed for the parametric statistical inference from experimental data on cell clones under the proposed model. The method uses simulation-based approximations of the means and the variance-covariance matrices of cell counts. The proposed estimator for the vector of unknown parameters is strongly consistent and asymptotically normal under mild regularity conditions, while its variance-covariance matrix is estimated by the parametric bootstrap.
A Monte Carlo Wald test is proposed for the test of hypotheses. Finite sample properties of the estimator have been studied by computer simulations. The model and associated methods of parametric inference have been applied to the analysis of proliferation and differentiation of cultured O-2A progenitor cells that play a key role in the development of the central nervous system. It follows from this analysis that the time to division of the progenitor cell and the time to its differentiation (into an oligodendrocyte) are not identically distributed. This biological finding suggests that a molecular event determining the type of cell transformation is more likely to occur at the start rather than at the end of the mitotic cycle.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F03 Parametric hypothesis testing
60J85 Applications of branching processes
65C05 Monte Carlo methods
62N02 Estimation in survival analysis and censored data
62F12 Asymptotic properties of parametric estimators
62M05 Markov processes: estimation; hidden Markov models
Full Text: DOI

References:

[1] Athreya K. B., Branching Processes (1972) · Zbl 0259.60002 · doi:10.1007/978-3-642-65371-1
[2] DOI: 10.1016/S0025-5564(99)00010-3 · Zbl 0961.92016 · doi:10.1016/S0025-5564(99)00010-3
[3] DOI: 10.1007/s002850100085 · Zbl 0986.92010 · doi:10.1007/s002850100085
[4] DOI: 10.1016/S0167-9473(01)00052-4 · Zbl 1132.62337 · doi:10.1016/S0167-9473(01)00052-4
[5] Davison A. C., Bootstrap Methods and Their Application (1997) · Zbl 0886.62001 · doi:10.1017/CBO9780511802843
[6] Geyer C. J., Markov Chain Monte Carlo in Practice pp 241– (1996) · doi:10.1007/978-1-4899-4485-6_14
[7] Gourieroux C., Annales d’Economie et de Statistique 20 pp 69– (1991)
[8] Hall P., Journal of the Royal Statistical Society, Series B 51 pp 459– (1989)
[9] DOI: 10.1016/S0025-5564(00)00052-3 · Zbl 0976.92007 · doi:10.1016/S0025-5564(00)00052-3
[10] Hyrien O., Mathematical Biosciences (2004)
[11] Jagers P., Journal of Applied Probability 6 pp 249– (1969)
[12] Jagers P., Branching Processes with Biological Applications (1975) · Zbl 0356.60039
[13] Nedelman J., Journal of Mathematical Biology 25 pp 203– (1985) · Zbl 0615.92014 · doi:10.1007/BF00276390
[14] Noble M., Journal of Neuroscience 4 pp 1892– (1984)
[15] DOI: 10.1038/333560a0 · doi:10.1038/333560a0
[16] DOI: 10.1006/dbio.2002.0610 · doi:10.1006/dbio.2002.0610
[17] DOI: 10.1038/303390a0 · doi:10.1038/303390a0
[18] Sevast’yanov B. A., Branching Processes (1971)
[19] DOI: 10.1016/S0025-5564(99)00017-6 · Zbl 0962.92016 · doi:10.1016/S0025-5564(99)00017-6
[20] Yakovlev A. Y., Transient Processes in Cell Proliferation Kinetics (1989) · Zbl 0714.92008 · doi:10.1007/978-3-642-48702-6
[21] DOI: 10.1007/s002850050119 · Zbl 0901.92007 · doi:10.1007/s002850050119
[22] DOI: 10.1016/S0025-5564(00)00040-7 · Zbl 0984.62091 · doi:10.1016/S0025-5564(00)00040-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.