×

Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith-Martin cell cycle model. (English) Zbl 1281.92020

Summary: The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time based on the distribution of times to the first division. Choosing the distribution of time to the first division to fit thymidine labeling data for T cells stimulated in vitro under different concentrations of IL-2, we fit CFSE data to determine the dependence of T cell kinetic parameters on the concentration of IL-2. As the concentration of IL-2 increases, the average cell cycle time is shortened, the death rate of cells is decreased, and a higher fraction of cells is recruited into division. We also find that if the average cell cycle time increases with division class then the qualify of our fit to the data improves.

MSC:

92C37 Cell biology
Full Text: DOI

References:

[1] Asquith, B., Debacq, C., Florins, A., Gillet, N., Sanchez-Alcaraz, T., Mosley, A., Willems, L., 2006. Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc. Roy. Soc. B 273, 1165–1171. · doi:10.1098/rspb.2005.3432
[2] Bates, D.M., Watts, D.G., 1988. Nonlinear Regression Analysis and its Applications. Wiley, New York. · Zbl 0728.62062
[3] Bernard, S., Pujo-Menjouret, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J. 84, 3414–2424. · doi:10.1016/S0006-3495(03)70063-0
[4] Bird, J.J., Brown, D.R., Mullen, A.C. et al., 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237. · doi:10.1016/S1074-7613(00)80605-6
[5] Brooks, R.F., Bennett, D.C., Smith, J.A., 1980. Mammalian cell cycles need two random transitions. Cell 19, 493–504. · doi:10.1016/0092-8674(80)90524-3
[6] Cantrell, D.A., Smith, K.A., 1984. The interleukin-2 T cell system: a new cell growth model. Science 224, 1312–1316. · doi:10.1126/science.6427923
[7] Clyde, R.G., Bown, J.L., Hupp, T.R., Zhelev, N., Crawford, J.W., 2006. The role of modelling in identifying drug targets for diseases of the cell cycle. J. Roy. Soc. Interface 22, 617–627. · doi:10.1098/rsif.2006.0146
[8] Cooper, S., 1982. The continuum model: statistical implications. J. Theor. Biol. 94, 783–800. · doi:10.1016/0022-5193(82)90078-9
[9] De Boer, R.J., Perelson, A.S., 2005. Estimating division and death rates from CFSE data. J. Comp. Appl. Math. 184, 140–164. · Zbl 1074.92016 · doi:10.1016/j.cam.2004.08.020
[10] De Boer, R.J., Ganusov, V.V., Milutinovic, D., Hodgkin, P.D., Perelson, A.S., 2006. Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol. 68, 1011–1031. · Zbl 1334.92112 · doi:10.1007/s11538-006-9094-8
[11] Deenick, E.K., Hasbold, J., Hodgkin, P.D., 1999. Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol. 163, 4707–4714.
[12] Deenick, E.K., Gett, A.V., Hodgkin, P.D., 2003. Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–2972.
[13] Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77. · Zbl 0587.62082 · doi:10.1214/ss/1177013815
[14] Fazekas de St Groth, B., Smith, A.L., Koh, W.-P., Girgis, L., Cook, M.C., Bertolino, P., 1999. Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: a marriage made in heaven. Immunol. Cell Biol. 77, 530–538. · doi:10.1046/j.1440-1711.1999.00871.x
[15] Ganusov, V.V., Pilyugin, S.S., De Boer, R.J., Murali-Krishna, K., Ahmed, R., Antia, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200. · doi:10.1016/j.jim.2005.01.011
[16] Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493. · doi:10.1073/pnas.95.16.9488
[17] Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244. · doi:10.1038/79782
[18] Hasbold, J.A., Lyons, A.B., Kehry, M.R., Hodgkin, P.D., 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051. · doi:10.1002/(SICI)1521-4141(199803)28:03<1040::AID-IMMU1040>3.0.CO;2-9
[19] Hodgkin, P.D., Go, N.F., Cupp, J.E., Howard, M., 1991. Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell. Immunol. 134, 14–30. · doi:10.1016/0008-8749(91)90327-8
[20] Hodgkin, P.D., Lee, J.H., Lyons, A.B., 1996. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281. · doi:10.1084/jem.184.1.277
[21] Hyrien, O., Zand, M.S., 2007. A mixture model with dependent observations for the analysis of CFSE-labeling experiments. J. Amer. Stat. Assoc., in press. · Zbl 1471.62508
[22] Koch, A.L., 1999. The re-incarnation, re-interpretation and re-demise of the transition probability model. J. Biotech. 71, 143–156. · doi:10.1016/S0168-1656(99)00019-X
[23] Leon, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol. 229, 455–476. · doi:10.1016/j.jtbi.2004.04.011
[24] Lyons, A.B., 2000. Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154. · doi:10.1016/S0022-1759(00)00231-3
[25] Marrack, P., Mitchell, T., Bender, J., Hilderman, D., Kedl, R., Teague, K., Kappler, J., 1998. T-cell survival. Immunol. Rev. 165, 279–285. · doi:10.1111/j.1600-065X.1998.tb01245.x
[26] Nordon, R.E., Nakamura, M., Ramirez, C., Odell, R., 1999. Analysis of growth kinetics by division tracking. Immunol. Cell. Biol. 77, 523–529. · doi:10.1046/j.1440-1711.1999.00869.x
[27] Novak, B., Tyson, J.J., 1995. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 173, 283–305. · doi:10.1006/jtbi.1995.0063
[28] Novak, B., Tyson, J.J., 1997. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 94, 9147–9152. · doi:10.1073/pnas.94.17.9147
[29] Novak, B., Tyson, J.J., 2004. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579. · doi:10.1016/j.jtbi.2004.04.039
[30] Pilyugin, S.S., Ganusov, V.V., Murali-Krishna, K., Ahmed, R., Antia, R., 2003. The rescaling method for quantifying the turnover of cell population. J. Theor. Biol. 225, 275–283. · doi:10.1016/S0022-5193(03)00245-5
[31] Revy, P., Sospedra, M., Barbour, B., Trautmann, A., 2001. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931. · doi:10.1038/ni713
[32] Smith, K.A., 1988. Interleukin-2: Inception, impact, and implications. Science 240, 1169–1176. · doi:10.1126/science.3131876
[33] Smith, J.A., Martin, L., 1973. Do cells cycle?. Proc. Natl. Acad. Sci. USA 70, 1263–1267. · doi:10.1073/pnas.70.4.1263
[34] Smith, J.A., Laurence, D.J.R., Rudland, P.S., 1981. Limitations of cell kinetics in distinguishing cell cycle models. Nature 293, 648–650. · doi:10.1038/293648a0
[35] Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D., 2003. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune response. J. Immunol. 170, 686–694.
[36] Tyrcha, J., 2001. Age-dependent cell cycle models. J. Theor. Biol. 213, 89–101. · doi:10.1006/jtbi.2001.2403
[37] Tyson, J.J., 1991. Modeling the cell division cycle: cdc2 and cycling interactions. Proc. Natl. Acad. Sci. USA 88, 7328–7332. · doi:10.1073/pnas.88.16.7328
[38] Vella, A.T., Steven, D., Potter, T.A., Kappler, J., Marrack, P., 1998. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 3810–3815. · doi:10.1073/pnas.95.7.3810
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.