×

\(L ^{2}\)-theory for non-symmetric Ornstein-Uhlenbeck semigroups on domains. (English) Zbl 1302.60094

Summary: We prove that the mild solution of the stochastic evolution equation \({\text{d}X(t) = AX(t)\,\text{d}t + \text{d}W(t)}\) on a Banach space \(E\) has a continuous modification if the associated Ornstein-Uhlenbeck semigroup is analytic on \(L ^{2}\) with respect to the invariant measure. This result is used to extend recent work of Da Prato and Lunardi for Ornstein-Uhlenbeck semigroups on domains \({\mathcal{O} \subseteq E}\) to the non-symmetric case. Denoting the generator of the Ornstein-Uhlenbeck semigroup by \({L_\mathcal{O}}\), we obtain sufficient conditions in order that the domain of \({\sqrt{-L_\mathcal{O}}}\) be a first-order Sobolev space.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
35J25 Boundary value problems for second-order elliptic equations
35K20 Initial-boundary value problems for second-order parabolic equations
42B25 Maximal functions, Littlewood-Paley theory
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47D06 One-parameter semigroups and linear evolution equations
60H07 Stochastic calculus of variations and the Malliavin calculus

References:

[1] D. Albrecht, X.T. Duong, and A. McIntosh, Operator theory and harmonic analysis, in: ”Instructional Workshop on Analysis and Geometry, Part III” (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34, Austral. Nat. Univ., Canberra, 1996, pp. 77–136. · Zbl 0903.47010
[2] P. Auscher, A. McIntosh, A. Nahmod, Holomorphic functional calculi of perturbed operators, quadratic estimates and interpolation, Indiana Univ. Math. J. 46, (1997), no. 2, 375–403. · Zbl 0903.47011
[3] A. Axelsson, S. Keith, A. McIntosh, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. 163 (2006), no. 3, 455–497. · Zbl 1094.47045
[4] Z. Brzeźniak and J.M.A.M. van Neerven, Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem, Studia Math. 143 (2000), no. 1, 43–74. · Zbl 0964.60043
[5] R. Carmona, Tensor product of Gaussian measures, in: ”Vector Space Measures and Applications” (Dublin, 1977), II, Lecture Notes in Phys., Vol. 77, Springer-Verlag, Berlin-New York, 1978, pp. 96–124.
[6] A. Chojnowska-Michalik and B. Godys, Nonsymmetric Ornstein–Uhlenbeck semigroup as second quantized operator, J. Math. Kyoto Univ. 36, (1996), no. 3, 481–498. · Zbl 0882.47013
[7] A. Chojnowska-Michalik and B. Godys, Nonsymmetric Ornstein–Uhlenbeck generators, in: ”Infinite Dimensional Stochastic Analysis” (Amsterdam, 1999), Royal. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 99–116.
[8] M.G. Cowling, Harmonic analysis on semigroups, Ann. of Math. (2) 117, (1983), no. 2, 267–283. · Zbl 0528.42006
[9] G. Da Prato, B. Godys, J. Zabczyk, Ornstein–Uhlenbeck semigroups in open sets of Hilbert spaces, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 4, 433–438. · Zbl 0895.60083
[10] G. Da Prato, S. Kwapień, J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), no. 1, 1–23. · Zbl 0634.60053
[11] G. Da Prato and A. Lunardi, On the Dirichlet semigroup for Ornstein–Uhlenbeck operators in subsets of Hilbert spaces, J. Funct. Anal. 259 (2010), no. 10, 2642–2672. · Zbl 1204.35172
[12] G. Da Prato and A. Lunardi, Maximal L 2 regularity for Dirichlet problems in Hilbert spaces, arXiv:1201.3809. · Zbl 1293.35359
[13] Da Prato G., Zabczyk J.: ”Stochastic Equations in Infinite Dimensions”, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992) · Zbl 0761.60052
[14] G. Da Prato and J. Zabczyk, ”Second Order Partial Differential Equations in Hilbert Spaces”, London Mathematical Society Lecture Note Series, Vol. 293, Cambridge University Press, Cambridge, 2002. · Zbl 1012.35001
[15] J.-D. Deuschel and D.W. Stroock, ”Large Deviations”, Pure and Applied Mathematics, Vol. 137, Academic Press, Inc., Boston, MA, 1989. · Zbl 0705.60029
[16] Engel K.J, Nagel R.: ”A Short Course on Operator Semigroups”, Universitext. Springer Verlag, New York (2006) · Zbl 1106.47001
[17] X. Fernique, Fonctions aléatoires à à valeurs vectorielles, in: ”Probability in Banach Spaces 6” (Sandbjerg, 1986), Progr. Probab., Vol. 20, Birkhäuser Verlag, Boston, MA, 1990, pp. 51–81.
[18] M. Fuhrman, Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces, Studia Math. 115 (1995), no. 1, –71. · Zbl 0830.47033
[19] B. Godys, On analyticity of Ornstein–Uhlenbeck semigroups, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), no. 3, 131–140. · Zbl 1026.47506
[20] B. Godys, F. Gozzi and J.M.A.M van Neerven, On closability of directional gradients, Potential Anal. 18 (2003), no. 4, 289–310. · Zbl 1055.60053
[21] Godys, Neerven J.M.A.M: Transition semigroups of Banach space valued Ornstein–Uhlenbeck processes. Acta Applicandae Math. 76, 283–330 (2003) · Zbl 1027.60068 · doi:10.1023/A:1023261101091
[22] M.H.A. Haase, ”The Functional Calculus for Sectorial Operators”, Operator Theory: Advances and Applications, Vol. 169, Birkhäuser Verlag, Basel, 2006. · Zbl 1101.47010
[23] I. Iscoe, M.B. Marcus, D. McDonald, M. Talagrand, J. Zinn, Continuity of l 2 -valued Ornstein–Uhlenbeck processes, Ann. Probab. 18 (1990), no. 1, 68–84. · Zbl 0699.60052
[24] T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1980. · Zbl 0435.47001
[25] P.C. Kunstmann and L. Weis, Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H functional calculus, in: ”Functional Analytic Methods for Evolution Equations”, Lecture Notes in Math., 1855, Springer, Berlin, 2004, pp. 65–311. · Zbl 1097.47041
[26] J. Maas, J.M.A.M. van Neerven: On analytic Ornstein–Uhlenbeck semigroups in infinite dimensions, Arch. Math. 89, 226–236 (2007) · Zbl 1137.47032
[27] Maas J., van Neerven J.M.A.M: Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces. J Func. Anal. 257, 2410–2475 (2009) · Zbl 1180.47032 · doi:10.1016/j.jfa.2009.07.001
[28] J. Maas and J.M.A.M. van Neerven, Gradient estimates and domain identification for analytic Ornstein–Uhlenbeck operators, in: ”Parabolic Problems: The Herbert Amann Festschrift”, Progress in Nonlinear Differential Equations and Their Applications, Vol. 80, Birkhäuser Verlag, 2011, pp. 463–477. · Zbl 1288.47041
[29] A. Millet and W. Smoleński, On the continuity of Ornstein–Uhlenbeck processes in infinite dimensions, Probab. Theory Related Fields 92 (1992), no. 4, 529–547. · Zbl 0767.60038
[30] van Neerven J.M.A.M: Nonsymmetric Ornstein-Uhlenbeck semigroups in Banach spaces. J. Funct. Anal. 155, 495–535 (1998) · Zbl 0928.47031 · doi:10.1006/jfan.1997.3237
[31] van Neerven J.M.A.M., Weis L: Stochastic integration of functions with values in a Banach space. Studia Math. 166, 131–170 (2005) · Zbl 1073.60059 · doi:10.4064/sm166-2-2
[32] E.M. Ouhabaz: ”Analysis of Heat Equations on Domains”, London Math Soc. Monogr. Ser. 31. Princeton University Press, Princeton,NJ (2005) · Zbl 1082.35003
[33] J. Rosiński, Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise, Colloq. Math. 43 (1980), no. 1, 183–201 (1981). · Zbl 0478.60017
[34] W. Smoleński, Continuity of Ornstein–Uhlenbeck processes, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 203–206 (1990). · Zbl 0754.60088
[35] A. Talarczyk, Dirichlet problem for parabolic equations on Hilbert spaces, Studia Math. 141 (2000), no. 2, 109–142. · Zbl 0977.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.