×

Maximal \(L^2\) regularity for Dirichlet problems in Hilbert spaces. (English) Zbl 1293.35359

The authors study the Dirichlet problem \[ \lambda U- \mathcal{L}U=F \text{ in } \mathcal{O}, \qquad U=0 \text{ on } \partial \mathcal{O}. \] Here \( \mathcal{O}\) is an open subset of a Hilbert space \(X\), \(F\in L^2 (\mathcal{O},\mu)\), \(\mu\) is a non-degenerate centered Gaussian measure on \(X\), and \(\mathcal{L}\) is an Ornstein-Uhlenbeck operator.
The main results of the paper concern the problem whether the weak solution \(U\) belongs to the Sobolev space \(W^{2,2} (\mathcal{O},\mu)\).
Previous results show that this question has a positive answer in the case \(\mathcal{O}=X\), but on general domains \(\mathcal{O}\) an explicit basis of \( L^2 (\mathcal{O},\mu)\) formed by eigenfunctions is not available, that could play the role of the Hermite polynomials and Wiener chaos decomposition used in the case \(\mathcal{O}=X\). The authors follow a completely different approach that consists of two steps:
Step 1. Dimension-free \(W^{2,2}\) estimates for finite-dimensional approximations.
Step 2. Approximate weak solutions by cylindrical functions that solve the finite-dimensional problems.
Both steps are rather delicate.
The final result gives a sufficient condition in terms of geometric properties of the boundary \(\partial \mathcal{O}\). These conditions are defined via properties of a function that has \(\mathcal{O}\) as a level set. Examples discussed include half-spaces, regions below a graph, spheres, and the special case of \(X=L^2(0,1)\).

MSC:

35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)

References:

[1] Barbu, V.; Da Prato, G.; Tubaro, L., Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space, Ann. Probab., 37, 1427-1458 (2009) · Zbl 1205.60141
[2] Barbu, V.; Da Prato, G.; Tubaro, L., Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II, Ann. Inst. H. Poincarè Probab. Stat., 47, 699-724 (2011) · Zbl 1230.60081
[3] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[4] Bogachev, V. I., Gaussian Measures, Math. Surveys Monogr., vol. 62 (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0938.28010
[5] Bogachev, V. I., Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., vol. 164 (2010), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1247.28001
[6] Chojnowska-Michalik, A.; Goldys, B., Symmetric Ornstein-Uhlenbeck operators and their generators, Probab. Theory Related Fields, 124, 459-486 (2002) · Zbl 1028.60057
[7] Da Prato, G.; Goldys, B.; Zabczyk, J., Ornstein-Uhlenbeck semigroups in open sets of Hilbert spaces, C. R. Math. Acad. Sci. Paris, 325, 433-438 (1997) · Zbl 0895.60083
[8] Da Prato, G.; Lunardi, A., On the Dirichlet semigroup for Ornstein-Uhlenbeck operators in subsets of Hilbert spaces, J. Funct. Anal., 259, 2642-2672 (2010) · Zbl 1204.35172
[9] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0761.60052
[10] Da Prato, G.; Zabczyk, J., Second Order Partial Differential Equations in Hilbert Spaces, London Math. Soc. Lecture Notes, vol. 293 (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1012.35001
[11] Lunardi, A.; Metafune, G.; Pallara, D., Dirichlet boundary conditions for elliptic operators with unbounded drift, Proc. Amer. Math. Soc., 133, 2625-2635 (2005) · Zbl 1210.35134
[12] Maas, J.; Van Neerven, J., Boundedness of Riesz transforms for elliptic operators in abstract Wiener spaces, J. Funct. Anal., 257, 2410-2475 (2009) · Zbl 1180.47032
[13] Malliavin, P., Stochastic Analysis (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0878.60001
[14] Meyer, P.-A., Note sur les processus dʼOrnstein-Uhlenbeck, (Séminaire de Probabilités, XVI. Séminaire de Probabilités, XVI, Lecture Notes in Math., vol. 920 (1982), Springer-Verlag: Springer-Verlag Berlin), 95-133 · Zbl 0481.60041
[15] Metafune, G.; Prüss, J.; Schnaubelt, R.; Rhandi, A., \(L^p\)-regularity for elliptic operators with unbounded coefficients, Adv. Differential Equations, 10, 1131-1164 (2005) · Zbl 1156.35385
[16] Shigekawa, I., Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ., 32, 731-748 (1992) · Zbl 0777.60047
[17] Talarczyk, A., Dirichlet problem for parabolic equations on Hilbert spaces, Studia Math., 141, 109-142 (2000) · Zbl 0977.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.