×

Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces. (English) Zbl 1180.47032

Let \((E,H,\mu)\) be an abstract Wiener space, \(D\) the Malliavin derivative, \(V\) a closed, densely defined operator from \(H\) to some other Hilbert space \(\underline H\), and \(D_V:= VD\). Given a bounded operator \(B\) on \(\underline H\) coercive on the range \(\overline{R(V)}\), consider \(A:= V^*BV\), \(A^*:= VV^*B\), and the realisations of \(L:= D_{V^*}BD_V\) in \(L^p(E,\mu)\) and of \(L:= D_V D_{V^*}B\) in \(L^p(E,\mu;\underline H)\), \(1< p<\infty\).
As a non-symmetric generalisation of the classical Meyer inequalities of Malliavin calculus, the equivalence of the following four assertions is proved:
(1) \(D(\sqrt{L})= D(D_V)\) with \(\|\sqrt{L}f\|_p\overline\sim\| D_Vf\|_p\) for \(f\in D(\sqrt{L})\);
(2) \(L\) admits a bounded \(H^\infty\)-functional calculus on \(\overline{R(D_V)}\);
(3) \(D(\sqrt{A})= D(V)\) with \(\|\sqrt{A}h\|\overline\sim\| Vh\|\) for \(h\in D(\sqrt{A})\);
(4) \(A\) admits a bounded \(H^\infty\)-functional calculus on \(\overline{R(V)}\).
If (1)–(4) hold, then \(D(L)= D({D_V}^2)\cap D(D_A)\). A one-sided version of (1)–(4) leads to \(L^p\)-boundedness of the Riesz transform \(D_V/\sqrt{L}\) in terms of a square function estimate. If \(-A\) generates an analytic \(C_0\)-contraction semigroup on a Hilbert space and \(-L\) is the \(L^p\)-realisation of the generator of its second quantisation, the results imply that two-sided bounds of the Riesz transform of \(L\) are equivalent with the Kato square root property for \(A\). The boundedness of the Riesz transform is used to obtain an \(L^p\)-domain characterisation for \(L\).

MSC:

47D07 Markov semigroups and applications to diffusion processes
60H07 Stochastic calculus of variations and the Malliavin calculus
47A60 Functional calculus for linear operators

References:

[1] Albrecht, D.; Duong, X. T.; \(M^c\) Intosh, A., Operator theory and harmonic analysis, (Instructional Workshop on Analysis and Geometry, Part III. Instructional Workshop on Analysis and Geometry, Part III, Canberra, 1995. Instructional Workshop on Analysis and Geometry, Part III. Instructional Workshop on Analysis and Geometry, Part III, Canberra, 1995, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 34 (1996), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra), 77-136 · Zbl 0903.47010
[2] Arendt, W., Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, (Evolutionary Equations. Evolutionary Equations, Handb. Differ. Equ., vol. I (2004), North-Holland: North-Holland Amsterdam), 1-85 · Zbl 1082.35001
[3] Auscher, P., On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(R^n\) and related estimates, Mem. Amer. Math. Soc., 186, 871 (2007) · Zbl 1221.42022
[4] P. Auscher, X.T. Duong, A. \(M^c\) Intosh, Boundedness of Banach space-valued singular integral operators and Hardy spaces, preprint, 2004; P. Auscher, X.T. Duong, A. \(M^c\) Intosh, Boundedness of Banach space-valued singular integral operators and Hardy spaces, preprint, 2004
[5] Auscher, P.; \(M^c\) Intosh, A.; Nahmod, A., Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J., 46, 2, 375-403 (1997) · Zbl 0903.47011
[6] Axelsson, A.; Keith, S.; \(M^c\) Intosh, A., Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math., 163, 3, 455-497 (2006) · Zbl 1094.47045
[7] Bogachev, V. I., Gaussian Measures, Math. Surveys Monogr., vol. 62 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0938.28010
[8] Brzeźniak, Z.; van Neerven, J. M.A. M., Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise, J. Math. Kyoto Univ., 43, 2, 261-303 (2003) · Zbl 1056.60057
[9] Butzer, P. L.; Berens, H., Semi-Groups of Operators and Approximation, Grundlehren Math. Wiss., vol. 145 (1967), Springer-Verlag: Springer-Verlag New York · Zbl 0164.43702
[10] Chill, R.; Fašangová, E.; Metafune, G.; Pallara, D., The sector of analyticity of the Ornstein-Uhlenbeck semigroup on \(L^p\) spaces with respect to invariant measure, J. London Math. Soc. (2), 71, 3, 703-722 (2005) · Zbl 1123.35030
[11] Chojnowska-Michalik, A.; Goldys, B., Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator, J. Math. Kyoto Univ., 36, 3, 481-498 (1996) · Zbl 0882.47013
[12] Chojnowska-Michalik, A.; Goldys, B., Generalized Ornstein-Uhlenbeck semigroups: Littlewood-Paley-Stein inequalities and the P.A. Meyer equivalence of norms, J. Funct. Anal., 182, 2, 243-279 (2001) · Zbl 0997.47036
[13] Coulhon, T.; Duong, X. T.; Li, X. D., Littlewood-Paley-Stein functions on complete Riemannian manifolds for \(1 \leqslant p \leqslant 2\), Studia Math., 154, 1, 37-57 (2003) · Zbl 1035.42014
[14] Cowling, M., Harmonic analysis on semigroups, Ann. of Math. (2), 117, 2, 267-283 (1983) · Zbl 0528.42006
[15] Cowling, M.; Doust, I.; \(M^c\) Intosh, A.; Yagi, A., Banach space operators with a bounded \(H^\infty\) functional calculus, J. Austral. Math. Soc. Ser. A, 60, 1, 51-89 (1996) · Zbl 0853.47010
[16] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 44 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0761.60052
[17] Denk, R.; Hieber, M.; Prüss, J., \(R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, 788 (2003) · Zbl 1274.35002
[18] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely Summing Operators, Cambridge Stud. Adv. Math., vol. 43 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0855.47016
[19] Goldys, B.; Gozzi, F.; van Neerven, J. M.A. M., On closability of directional gradients, Potential Anal., 18, 4, 289-310 (2003) · Zbl 1055.60053
[20] Goldys, B.; van Neerven, J. M.A. M., Transition semigroups of Banach space-valued Ornstein-Uhlenbeck processes, Acta Appl. Math., 76, 3, 283-330 (2003), updated version on · Zbl 1027.60068
[21] Gundy, R. F., Sur les transformations de Riesz pour le semi-groupe d’Ornstein-Uhlenbeck, C. R. Acad. Sci. Paris Sér. I Math., 303, 19, 967-970 (1986) · Zbl 0606.60063
[22] Haak, B. H.; Kunstmann, P. C., Admissibility of unbounded operators and wellposedness of linear systems in Banach spaces, Integral Equations Operator Theory, 55, 4, 497-533 (2006) · Zbl 1138.93361
[23] Haase, M., The Functional Calculus for Sectorial Operators, Oper. Theory Adv. Appl., vol. 169 (2006), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1101.47010
[24] Janson, S., Gaussian Hilbert Spaces, Cambridge Tracts in Math., vol. 129 (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0887.60009
[25] Junge, M., Doob’s inequality for non-commutative martingales, J. Reine Angew. Math., 549, 149-190 (2002) · Zbl 1004.46043
[26] Kalton, N. J.; Kunstmann, P. C.; Weis, L., Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators, Math. Ann., 336, 4, 747-801 (2006) · Zbl 1111.47020
[27] N.J. Kalton, L. Weis, The \(H^{\infty;}\)-functional calculus and square function estimates, in preparation; N.J. Kalton, L. Weis, The \(H^{\infty;}\)-functional calculus and square function estimates, in preparation · Zbl 1385.47008
[28] Kalton, N. J.; Weis, L., The \(H^\infty \)-calculus and sums of closed operators, Math. Ann., 321, 2, 319-345 (2001) · Zbl 0992.47005
[29] Kato, T., Fractional powers of dissipative operators, II, J. Math. Soc. Japan, 14, 242-248 (1962) · Zbl 0108.11203
[30] Krengel, U., Ergodic Theorems, de Gruyter Stud. Math., vol. 6 (1985), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0471.28011
[31] Kunstmann, P. C.; Weis, L., Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus, (Functional Analytic Methods for Evolution Equations. Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., vol. 1855 (2004), Springer: Springer Berlin), 65-311 · Zbl 1097.47041
[32] Lancien, F.; Lancien, G.; Le Merdy, C., A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. (3), 77, 2, 387-414 (1998) · Zbl 0904.47015
[33] Le Merdy, C., On square functions associated to sectorial operators, Bull. Soc. Math. France, 132, 1, 137-156 (2004) · Zbl 1066.47013
[34] Ledoux, M., The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math. (6) (Probability Theory), 9, 2, 305-366 (2000) · Zbl 0980.60097
[35] Lions, J.-L., Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan, 14, 233-241 (1962) · Zbl 0108.11202
[36] Maas, J.; van Neerven, J. M.A. M., On the domain of non-symmetric Ornstein-Uhlenbeck operators in Banach spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11, 603-626 (2008) · Zbl 1169.47032
[37] Maas, J.; van Neerven, J. M.A. M., On analytic Ornstein-Uhlenbeck semigroups in infinite dimensions, Archiv Math. (Basel), 89, 226-236 (2007) · Zbl 1137.47032
[38] \(M^c\) Intosh, A.; Yagi, A., Operators of type \(ω\) without a bounded \(H_\infty\) functional calculus, (Miniconference on Operators in Analysis. Miniconference on Operators in Analysis, Sydney, 1989. Miniconference on Operators in Analysis. Miniconference on Operators in Analysis, Sydney, 1989, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 24 (1990), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra), 159-172 · Zbl 0709.47016
[39] Metafune, G.; Prüss, J.; Rhandi, A.; Schnaubelt, R., The domain of the Ornstein-Uhlenbeck operator on an \(L^p\)-space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, 2, 471-485 (2002) · Zbl 1170.35375
[40] Meyer, P.-A., Note sur les processus d’Ornstein-Uhlenbeck, (Seminar on Probability, XVI. Seminar on Probability, XVI, Lecture Notes in Math., vol. 920 (1982), Springer: Springer Berlin), 95-133 · Zbl 0481.60041
[41] van Neerven, J. M.A. M.; Veraar, M. C.; Weis, L., Stochastic integration in UMD Banach spaces, Ann. Probab., 35, 1438-1478 (2007) · Zbl 1121.60060
[42] van Neerven, J. M.A. M.; Weis, L., Stochastic integration of functions with values in a Banach space, Studia Math., 166, 2, 131-170 (2005) · Zbl 1073.60059
[43] van Neerven, J. M.A. M.; Weis, L., Invariant measures for the linear stochastic Cauchy problem and \(R\)-boundedness of the resolvent, J. Evol. Equ., 6, 2, 205-228 (2006) · Zbl 1117.47033
[44] van Neerven, J. M.A. M.; Weis, L., Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion, Potential Anal., 29, 1, 65-88 (2008) · Zbl 1148.60031
[45] Nualart, D., The Malliavin Calculus and Related Topics, Probab. Appl. (N.Y.) (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1099.60003
[46] Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser., vol. 31 (2005), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 1082.35003
[47] Pisier, G., Riesz transforms: A simpler analytic proof of P.-A. Meyer’s inequality, (Séminaire de Probabilités, XXII. Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321 (1988), Springer: Springer Berlin), 485-501 · Zbl 0645.60061
[48] Pisier, G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., vol. 94 (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0698.46008
[49] Shigekawa, I., Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ., 32, 4, 731-748 (1992) · Zbl 0777.60047
[50] Simon, B., The \(P(\varphi)_2\) Euclidean (Quantum) Field Theory, Princeton Ser. Phys. (1974), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 1175.81146
[51] Stein, E. M., Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Ann. of Math. Stud., vol. 63 (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0193.10502
[52] Taggart, R., Pointwise convergence for semigroups in vector-valued \(L^p\) spaces, Math. Z, 261, 4, 933-949 (2009) · Zbl 1166.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.