×

Quantum cohomology via vicious and osculating walkers. (English) Zbl 1302.14045

Summary: We relate the counting of rational curves intersecting Schubert varieties of the Grassmannian to the counting of certain non-intersecting lattice paths on the cylinder, so-called vicious and osculating walkers. These lattice paths form exactly solvable statistical mechanics models and are obtained from solutions to the Yang-Baxter equation. The eigenvectors of the transfer matrices of these models yield the idempotents of the Verlinde algebra of the gauged \({\mathfrak{\hat{u}}(n)_{k}}\)-WZNW model. The latter is known to be closely related to the small quantum cohomology ring of the Grassmannian. We establish further that the partition functions of the vicious and osculating walker model are given in terms of Postnikov’s toric Schur functions and can be interpreted as generating functions for Gromov-Witten invariants. We reveal an underlying quantum group structure in terms of Yang-Baxter algebras and use it to give a generating formula for toric Schur functions in terms of divided difference operators which appear in known representations of the nil-Hecke algebra.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
05E05 Symmetric functions and generalizations
05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Agnihotri, S. Quantum Cohomology and the Verlinde Algebra. Ph.D. Thesis, University of Oxford (1995) · Zbl 1064.14066
[2] Agnihotri S., Woodward C.: Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett. 5, 817-836 (1998) · Zbl 1004.14013 · doi:10.4310/MRL.1998.v5.n6.a10
[3] Baxter, R.J. Exactly Solved Models in Statistical Mechanics. Academic Press Inc, Harcourt Brace Jovanovich Publishers, London (1989, Reprint of the 1982 original) · Zbl 0723.60120
[4] Bertram A.: Quantum Schubert calculus. Adv. Math. 128, 289-305 (1997) · Zbl 0945.14031 · doi:10.1006/aima.1997.1627
[5] Bertram, A., Ciocan-Fontanine, I., Fulton, W. Quantum multiplication of Schur polynomials. J. Algebra 219, 728-746 (1999) · Zbl 0936.05086
[6] Bogoliubov, N.M., Izergin, A.G., Korepin, V.E.: Quantum inverse scattering method and correlation functions. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1993) · Zbl 0787.47006
[7] Borodin A.: Periodic Schur process and cylindric partitions. Duke Math. J. 140(3), 391-468 (2007) · Zbl 1131.22003 · doi:10.1215/S0012-7094-07-14031-6
[8] Brak, R.: Osculating lattice paths and alternating sign matrices. In: Proceedings of Formal Power Series and Algebraic Combinatorics 9, 120-130 (1997) · Zbl 0722.60073
[9] Brak R., Owczarek A.: A combinatorial interpretation of the free-fermion condition of the six-vertex model. J. Phys. A Math. Gen. 32, 3497-3503 (1999) · Zbl 1026.82011 · doi:10.1088/0305-4470/32/19/303
[10] Buch A.S.: Quantum cohomology of Grassmannians. Compos. Math. 137(2), 227-235 (2003) · Zbl 1050.14053 · doi:10.1023/A:1023908007545
[11] Buch, A.S., Kresch, A., Tamvakis, H.: Gromov-Witten invariants on Grassmannians. J. Am. Math. Soc. 16(4), 901-915 (electronic) (2003) · Zbl 1063.53090
[12] Fisher M.E.: Walks, walls, wetting and melting. J. Stat. Phys. 34, 667-729 (1984) · Zbl 0589.60098 · doi:10.1007/BF01009436
[13] Fomin, F.; Greene, C. Noncommutative Schur functions and their applications. Discrete Math. 193, 179-200 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994) · Zbl 1011.05062
[14] Forrester P.: Exact solution of the lock step model of vicious walkers. J. Phys. A 23, 1259-73 (1990) · Zbl 0706.60079
[15] Forrester P.: Exact results for vicious walker models of domain walls. J. Phys. A 24, 203-218 (1991) · Zbl 0722.60073 · doi:10.1088/0305-4470/24/1/028
[16] Fulton W., Woodward C.: On the quantum product of Schubert classes. J. Algebraic Geom. 13, 641-661 (2004) · Zbl 1081.14076 · doi:10.1090/S1056-3911-04-00365-0
[17] Gepner D.: Fusion rings and geometry. Commun. Math. Phys. 141(2), 381-411 (1991) · Zbl 0752.17033 · doi:10.1007/BF02101511
[18] Gessel I.M., Krattenthaler C.: Cylindric partitions. Trans. Am. Math. Soc. 349, 429-479 (1997) · Zbl 0865.05003 · doi:10.1090/S0002-9947-97-01791-1
[19] Gorbounov, V., Rimanyi, R., Tarasov, V., Varchenko, A.: Cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra. arXiv preprint arXiv:1204.5138 (2012) · Zbl 1287.81063
[20] Guttmann A., Owczarek A., Viennot X.: Vicious walkers and Young tableaux. I. Without walls. J. Phys. A 31(40), 8123-8135 (1998) · Zbl 0930.05098 · doi:10.1088/0305-4470/31/40/007
[21] Krattenthaler C., Guttmann A., Viennot X.: Vicious walkers, friendly walkers and Young tableaux II. With a wall. J. Phys. A 33, 8835-66 (2000) · Zbl 0970.82016
[22] Krattenthaler, C., Guttmann, A., Viennot, X. Vicious walkers, friendly walkers, and Young tableaux III. Between two walls. Special issue in honor of Michael E. Fisher’s 70th birthday (Piscataway, NJ, 2001). J. Stat. Phys. 110(3-6), 1069-1086 (2003) · Zbl 1016.82017
[23] Intriligator K.: Fusion residues. Modern Phys. Lett. A 6(38), 3543-3556 (1991) · Zbl 1020.81847 · doi:10.1142/S0217732391004097
[24] Korff C., Stroppel C.: The \[{\widehat{ \mathfrak{sl}}(n)_k}\] sl^(n)k-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200-268 (2010) · Zbl 1230.17010 · doi:10.1016/j.aim.2010.02.021
[25] Korff, C.: Noncommutative Schur polynomials and the crystal limit of the \[{U_q\widehat{\mathfrak{sl}}(2)}\] Uqsl^(2)-vertex model. J. Phys. A 43, 434021 (2010) · Zbl 1202.81109
[26] Korff C.: The su(n) WZNW fusion ring as integrable model: a new algorithm to compute fusion coefficients. RIMS Kokyuroku Bessatsu B 28, 121-153 (2011) · Zbl 1239.17011
[27] Korff, C.: Cylindric Macdonald functions and a deformation of the Verlinde algebra. preprint; arxiv:1110.6356 · Zbl 1259.05186
[28] Lam T.: Affine Stanley symmetric functions. Am. J. Math. 128, 1553-1586 (2006) · Zbl 1107.05095 · doi:10.1353/ajm.2006.0045
[29] Macdonald, I.G.: Symmetric functions and Hall polynomials. In: Oxford Mathematical Monographs, 2nd edn. The Clarendon Press Oxford University Press, Clarendon (1995) · Zbl 0824.05059
[30] Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology, Preprint (2012), 1-276. arXiv preprint arXiv:1211.1287 · Zbl 1422.14002
[31] McNamara P.: Cylindric skew Schur functions. Adv. Math. 205, 275-312 (2006) · Zbl 1110.05099 · doi:10.1016/j.aim.2005.07.011
[32] Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. In: Progress Theor. Phys. Suppl. 177, 105-119 (2009) · Zbl 1173.81325
[33] Postnikov A.: Affine approach to quantum Schubert calculus. Duke Math. J. 128, 473-509 (2005) · Zbl 1081.14070 · doi:10.1215/S0012-7094-04-12832-5
[34] Rietsch K.: Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J. 110(3), 523-553 (2001) · Zbl 1013.14014 · doi:10.1215/S0012-7094-01-11033-8
[35] Rimanyi R., Schechtman V., Tarasov V., Varchenko A.: Cohomology of a flag variety as a Bethe algebra. Funct. Anal. Appl. 45(4), 252-264 (2011) · Zbl 1271.14072 · doi:10.1007/s10688-011-0027-4
[36] Siebert B., Tian G.: On quantum cohomology rings of Fano manifolds and a formula of Vafa and I ntriligator. Asian J. Math. 1(4), 679-695 (1997) · Zbl 0974.14040
[37] Vafa, C.: Topological mirrors and quantum rings. In: Essays on Mirror Manifolds, pp. 96-119. Int. Press, Hong Kong (1992) · Zbl 0827.58073
[38] Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. In: Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, pp. 357-422. Int. Press, Cambridge (1995) · Zbl 0863.53054
[39] Yong A.: Degree bounds in quantum Schubert calculus. Proc. Am. Math. Soc. 131, 2649-2655 (2003) · Zbl 1064.14066 · doi:10.1090/S0002-9939-03-06850-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.