×

Cohomology of a flag variety as a Bethe algebra. (English. Russian original) Zbl 1271.14072

Funct. Anal. Appl. 45, No. 4, 252-264 (2011); translation from Funkts. Anal. Prilozh. 45, No. 4, 16-31 (2011).
Summary: We interpret the equivariant cohomology \(H_{GL_n}^\ast(\mathcal F_{\boldsymbol\lambda},\mathbb C)\) of a partial flag variety \(\mathcal F_{\boldsymbol\lambda}\) parametrizing chains of subspaces \(0=F_0\subset F_1\subset\cdots\subset F_N=\mathbb C^n\), \(\dim F_i/F_{i-1}=\lambda_i\), as the Bethe algebra \(\mathcal B^\infty(\mathcal V^\pm_{\boldsymbol\lambda})\) of the \(\mathfrak{gl}_N\)-weight subspace \(\mathcal V^\pm_{\boldsymbol\lambda}\) of a \(\mathfrak{gl}_N[t]\)-module \(\mathcal V^\pm\).

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
81R99 Groups and algebras in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
32C36 Local cohomology of analytic spaces

References:

[1] M. F. Atiyah and R. Bott, ”The moment map and equivariant cohomology,” Topology, 23:1 (1984), 1–28. · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[2] A. Braverman, D. Maulik, and A. Okounkov, Quantum cohomology of the Springer resolution, http://arxiv.org/abs/1001.0056 . · Zbl 1226.14069
[3] V. Chari and S. Loktev, ”Weyl, Demazure and fusion modules for the current algebra of sl r+1,” Adv. Math., 207:2 (2006), 928–960. · Zbl 1161.17318 · doi:10.1016/j.aim.2006.01.012
[4] V. Chari and A. Pressley, ”Weyl modules for classical and quantum affine algebras,” Represent. Theory (electronic), 5 (2001), 191–223. · Zbl 0989.17019 · doi:10.1090/S1088-4165-01-00115-7
[5] A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, http://arxiv.org/abs/hep-th/0604128 . · Zbl 1179.82052
[6] M. Gaudin, ”Diagonalisation d’une classe d’Hamiltoniens de spin,” J. Physique, 37:10 (1976), 1089–1098.
[7] M. Gaudin, La fonction d’onde de Bethe, Collection du Commissariat à l’Énergie Atomique: Série Scientifique, Masson, Paris, 1983.
[8] E. Mukhin, V. Tarasov, and A. Varchenko, ”Bethe eigenvectors of higher transfer matrices,” J. Stat. Mech. Theory (electronic), No. 8 (2006), P08002.
[9] E. Mukhin, V. Tarasov, and A. Varchenko, ”Schubert calculus and representations of general linear group,” J. Amer. Math. Soc., 22:4 (2009), 909–940. · Zbl 1205.17026 · doi:10.1090/S0894-0347-09-00640-7
[10] E. Mukhin, V. Tarasov, and A. Varchenko, ”Spaces of quasi-exponentials and representations of glN,” J. Phys. A, 41:19, 194017 (2008). · Zbl 1142.81011 · doi:10.1088/1751-8113/41/19/194017
[11] E. Mukhin and A. Varchenko, ”Critical points of master functions and flag varieties,” Commun. Contemp. Math., 6:1 (2004), 111–163. · Zbl 1050.17022 · doi:10.1142/S0219199704001288
[12] A. Okounkov, ”Quantum groups and quantum cohomology,” in: Lectures at the 15th Midrasha Mathematicae on Derived Categories of Algebro-Geometric Origin and Integrable Systems, December 19–24, Jerusalem, 2010.
[13] R. Rimányi and A. Varchenko, Conformal blocks in the tensor product of vector representations and localization formulas, http://arxiv.org/abs/0911.3253 . · Zbl 1228.81250
[14] R. Rimányi, V. Schechtman, and A. Varchenko, Conformal blocks and equivariant cohomology, http://arxiv.org/abs/1007.3155 . · Zbl 1259.81080
[15] D. Talalaev, Quantization of the Gaudin system, http://arxiv.org/abs/hep-th/0404153 . · Zbl 1111.82015
[16] A. Varchenko, ”A Selberg integral type formula for an sl2 one-dimensional space of conformal blocks,” Mosc. Math. J., 10:2 (2010), 469–475. · Zbl 1222.81259
[17] E. Vasserot, ”Représentations de groupes quantiques et permutations,” Ann. Sci. École Norm. Sup., 26:6 (1993), 747–773. · Zbl 0822.17005
[18] E. Vasserot, ”Affine quantum groups and equivariant K-theory,” Transformation Groups, 3:3 (1998), 269–299. · Zbl 0969.17009 · doi:10.1007/BF01236876
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.