Skip to main content
Log in

Cohomology of a flag variety as a Bethe algebra

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We interpret the equivariant cohomology \(H_{GL_n }^* \)( λ ,ℂ) of a partial flag variety λ parametrizing chains of subspaces 0 = F 0F 1 ⊂ … ⊂ F N = ℂn, dimF i /F i−1 = λ i , as the Bethe algebra of the -weight subspace of a [t]-module .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah and R. Bott, “The moment map and equivariant cohomology,” Topology, 23:1 (1984), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Braverman, D. Maulik, and A. Okounkov, Quantum cohomology of the Springer resolution, http://arxiv.org/abs/1001.0056.

  3. V. Chari and S. Loktev, “Weyl, Demazure and fusion modules for the current algebra of sl r+1,” Adv. Math., 207:2 (2006), 928–960.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Chari and A. Pressley, “Weyl modules for classical and quantum affine algebras,” Represent. Theory (electronic), 5 (2001), 191–223.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, http://arxiv.org/abs/hep-th/0604128.

  6. M. Gaudin, “Diagonalisation d’une classe d’Hamiltoniens de spin,” J. Physique, 37:10 (1976), 1089–1098.

    MathSciNet  Google Scholar 

  7. M. Gaudin, La fonction d’onde de Bethe, Collection du Commissariat à l’Énergie Atomique: Série Scientifique, Masson, Paris, 1983.

  8. E. Mukhin, V. Tarasov, and A. Varchenko, “Bethe eigenvectors of higher transfer matrices,” J. Stat. Mech. Theory (electronic), No. 8 (2006), P08002.

  9. E. Mukhin, V. Tarasov, and A. Varchenko, “Schubert calculus and representations of general linear group,” J. Amer. Math. Soc., 22:4 (2009), 909–940.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Mukhin, V. Tarasov, and A. Varchenko, “Spaces of quasi-exponentials and representations of glN,” J. Phys. A, 41:19, 194017 (2008).

    Article  MathSciNet  Google Scholar 

  11. E. Mukhin and A. Varchenko, “Critical points of master functions and flag varieties,” Commun. Contemp. Math., 6:1 (2004), 111–163.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Okounkov, “Quantum groups and quantum cohomology,” in: Lectures at the 15th Midrasha Mathematicae on Derived Categories of Algebro-Geometric Origin and Integrable Systems, December 19–24, Jerusalem, 2010.

  13. R. Rimányi and A. Varchenko, Conformal blocks in the tensor product of vector representations and localization formulas, http://arxiv.org/abs/0911.3253.

  14. R. Rimányi, V. Schechtman, and A. Varchenko, Conformal blocks and equivariant cohomology, http://arxiv.org/abs/1007.3155.

  15. D. Talalaev, Quantization of the Gaudin system, http://arxiv.org/abs/hep-th/0404153.

  16. A. Varchenko, “A Selberg integral type formula for an sl2 one-dimensional space of conformal blocks,” Mosc. Math. J., 10:2 (2010), 469–475.

    MATH  MathSciNet  Google Scholar 

  17. E. Vasserot, “Représentations de groupes quantiques et permutations,” Ann. Sci. École Norm. Sup., 26:6 (1993), 747–773.

    MATH  MathSciNet  Google Scholar 

  18. E. Vasserot, “Affine quantum groups and equivariant K-theory,” Transformation Groups, 3:3 (1998), 269–299.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rimányi.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 45, No. 4, pp. 16–31, 2011

Original Russian Text Copyright © by R. Rimányi, V. Schechtman, V. Tarasov, and A. Varchenko

To the memory of V. I. Arnold

The first author is supported in part by NSA grant CON:H98230-10-1-0171. The third author is supported in part by NSF grant DMS-0901616. The fourth author is supported in part by NSF grant DMS-0555327.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimányi, R., Schechtman, V., Tarasov, V. et al. Cohomology of a flag variety as a Bethe algebra. Funct Anal Its Appl 45, 252–264 (2011). https://doi.org/10.1007/s10688-011-0027-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-011-0027-4

Key words

Navigation