×

The zero section of the universal semiabelian variety and the double ramification cycle. (English) Zbl 1302.14039

The main result of the present paper is the computation of a certain natural divisor class on the universal family over a partial compactification of \(\mathcal{A}_g\), the moduli space of principally polarized abelian varieties of dimension \(g\). Namely, denote by \(\mathcal{A}_g'\) Mumford’s partial compactification of \(\mathcal{A}_g\) obtained by adding semi-abelic varieties of torus rank one, i.e., compactifications of \(\mathbb{C}^*\)-extensions of abelian varieties of dimension \((g-1)\). The boundary \(\mathcal{A}_g' \setminus \mathcal{A}_g\) is isomorphic to \(\mathcal{X}_{g-1}\), the universal family over \(\mathcal{A}_{g-1}\) (the isomorphism is explicitly described in the paper). Furthermore it has the property that it is contained in every toroidal compactification of \(\mathcal{A}_g\). It is thus a natural starting point for the study of the Chow ring and cohomology groups of any compactification of \(\mathcal{A}_g\).
The universal family \(\mathcal{X}_g \to \mathcal{A}_g\) admits a zero section \(z_g : \mathcal{A}_g \to \mathcal{X}_g\), which set-theoretically assigns to any abelian variety \(A\) with origin \(0 \in A\) the moduli point \((A, 0)\) in \(\mathcal{X}_g\). This setup can be extended to a universal family \(\mathcal{X}_g'\) and a zero section \(z_g': \mathcal{A}_g' \to \mathcal{X}_g'\) over the partial compactification. The main result is then the computation of the class of the image of this section, expressed as a polynomial in certain geometrically defined classes of codimension \(1\) and \(2\).
This result is then used to compute the class of the closure of the double ramification cycle on a partial compactification of \(\mathcal{M}_{g,n}\), the moduli space of \(n\)-pointed curves of genus \(g\). Given an \(n\)-tuple \(\underline{d} = (d_1, \dots, d_n) \in \mathbb{Z}^n\) of integers summing to zero, the latter is defined as the locus of pointed curves \((C; p_1, \dots, p_n) \in \mathcal{M}_{g,n}\) such that \(\mathcal{O}_C(\sum d_i p_i) = 0 \in \mathrm{Jac}(C)\). This locus can be expressed as the pull-back of the zero section discussed above under the Abel-Jacobi map \(s_{\underline{d}}: \mathcal{M}_{g,n} \to \mathcal{X}_g\) defined set-theoretically by \(s_{\underline{d}}(C; p_1, \dots, p_n) = (\mathrm{Jac}(C), \mathcal{O}_C(\sum d_i p_i))\). It can also be interpreted as the Hurwitz locus of curves admitting a map to \(\mathbb{P}^1\) with prescribed preimages and ramification over two points (hence the name).
This construction of the double ramification cycle is not restricted to the case of smooth curves: It can be extended to curves of compact type, i.e., stable curves with no non-separating nodes. The class of the closure of the double ramification cycle on \(\mathcal{M}_{g,n}^{\mathrm{ct}}\) was computed by R. M. Hain [Math. Sci. Res. Inst. Publ. 28, 97–143 (1995; Zbl 0868.14006)]. Here the authors take this result one step further by extending the computation to \(\mathcal{M}_{g,n}^o\), the moduli spaces of stable curves with at most one non-separating node. Moreover they show that the Abel-Jacobi map does not extend to the locus of curves having more than one non-separating node.

MSC:

14K10 Algebraic moduli of abelian varieties, classification
14H10 Families, moduli of curves (algebraic)

Citations:

Zbl 0868.14006

Software:

Maple

References:

[1] V. Alexeev, Complete moduli in the presence of semiabelian group action , Ann. of Math. (2) 155 (2002), 611-708. · Zbl 1052.14017 · doi:10.2307/3062130
[2] V. Alexeev and A. Brunyate, Extending Torelli map to toroidal compactifications of Siegel space , Invent. Math. 188 (2011), 175-196. · Zbl 1242.14042 · doi:10.1007/s00222-011-0347-2
[3] A. Beauville, The action of \(SL_{2}\) on abelian varieties , J. Ramanujan Math. Soc. 25 (2010), 253-263. · Zbl 1228.14038
[4] R. Cavalieri, S. Marcus, and J. Wise, Polynomial families of tautological classes on \(\mathcal{M}_{g,n}^{rt}\), J. Pure Appl. Algebra 216 (2012), 950-981. · Zbl 1273.14053 · doi:10.1016/j.jpaa.2011.10.037
[5] C. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier-Mukai transform , J. Reine Angew. Math. 422 (1991), 201-219. · Zbl 0745.14003
[6] T. Ekedahl and G. van der Geer, The order of the top Chern class of the Hodge bundle on the moduli space of abelian varieties , Acta Math. 192 (2004), 95-109. · Zbl 1061.14041 · doi:10.1007/BF02441086
[7] T. Ekedahl, Cycles representing the top Chern class of the Hodge bundle on the moduli space of abelian varieties , Duke Math. J. 129 (2005), 187-199. · Zbl 1090.14002 · doi:10.1215/S0012-7094-04-12917-3
[8] C. Erdenberger, S. Grushevsky, and K. Hulek, Some intersection numbers of divisors on toroidal compactifications of \({\mathcal{A}}_{g}\) , J. Algebraic Geom. 19 (2010), 99-132. · Zbl 1189.14050 · doi:10.1090/S1056-3911-09-00512-8
[9] H. Esnault and E. Viehweg, Chern classes of Gauss-Manin bundles of weight \(1\) vanish , J. \(K\)-Theory 26 (2002), 287-305. · Zbl 1077.14552 · doi:10.1023/A:1020619014609
[10] C. Faber, A non-vanishing result for the tautological ring of \({\mathcal{M}}_{g}\), preprint, [math.AG]. · JFM 40.0300.01
[11] C. Faber, “A conjectural description of the tautological ring of the moduli space of curves” in Moduli of Curves and Abelian Varieties , Aspects Math. E33 , Vieweg, Braunschweig, Germany, 1999, 109-129. · Zbl 0978.14029 · doi:10.1007/978-3-322-90172-9_6
[12] C. Faber and R. Pandharipande, Hodge integrals, partition matrices, and the \(\lambda_{g}\) conjecture , Ann. of Math. (2) 157 (2003), 97-124. · Zbl 1058.14046 · doi:10.4007/annals.2003.157.97
[13] C. Faber, Relative maps and tautological classes , J. Eur. Math. Soc. (JEMS) 7 (2005), 13-49. · Zbl 1084.14054 · doi:10.4171/JEMS/20
[14] C. Faber, S. Shadrin, and D. Zvonkine, Tautological relations and the \(r\)-spin Witten conjecture , Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 621-658. · Zbl 1203.53090
[15] W. Fulton, Intersection Theory , Ergeb. Math. Grenzgeb. (3) 2 , Folge, Springer, Berlin, 1998. · Zbl 0541.14005
[16] G. van der Geer, The Chow ring of the moduli space of abelian threefolds , J. Algebraic Geom. 7 (1998), 753-770. · Zbl 0952.14003
[17] G. van der Geer, Cycles on the moduli space of abelian varieties , Aspects Math. E33 , Vieweg, Braunschweig, Germany, 1999, 65-89. · Zbl 0974.14031 · doi:10.1007/978-3-322-90172-9_4
[18] G. van der Geer and B. Moonen, Abelian varieties , preprint, . · Zbl 1172.14304 · doi:10.1090/S1056-3911-09-00523-2
[19] T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves , Duke Math. J. 130 (2005), 1-37. · Zbl 1088.14007 · doi:10.1215/S0012-7094-05-13011-3
[20] S. Grushevsky and K. Hulek, Principally polarized semiabelic varieties of torus rank up to 3, and the Andreotti-Mayer loci , Pure Appl. Math. Q. 7 (2011), 1309-1360. · Zbl 1251.14030 · doi:10.4310/PAMQ.2011.v7.n4.a11
[21] S. Grushevsky, The class of the locus of intermediate Jacobians of cubic threefolds , Invent. Math. 190 (2012), 119-168. · Zbl 1272.14032 · doi:10.1007/s00222-012-0377-4
[22] S. Grushevsky and D. Lehavi, Some intersections in the Poincaré bundle and the universal theta divisor on \(\overline{{\mathcal{A}}_{g}}\), Int. Math. Res. Not. IMRN 2008 , no. 1, Art. ID rnm 128. · Zbl 1148.14005
[23] S. Grushevsky and D. Zakharov, The double ramification cycle and the theta divisor , to appear in Proc. of the Amer. Math. Soc., preprint, [math.AG]. 1206.7001v1 · Zbl 1327.14132
[24] R. Hain, “Normal functions and the geometry of moduli spaces of curves” in Handbook of Moduli, I , International Press, Boston, 2013, 527-578. · Zbl 1322.14049
[25] E.-N. Ionel, Topological recursive relations in \(H^{2g}({\mathcal{M}}_{g,n})\), Invent. Math. 148 (2002), 627-658. · Zbl 1056.14076 · doi:10.1007/s002220100205
[26] S. Keel and L. Sadun, Oort’s conjecture for \({\mathcal{A}}_{g}\otimes\mathbb{C}\), J. Amer. Math. Soc. 16 (2003), 887-900. · Zbl 1023.14020 · doi:10.1090/S0894-0347-03-00431-4
[27] K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes , Invent. Math. 113 (1993), 85-102. · Zbl 0806.14001 · doi:10.1007/BF01244303
[28] E. Looijenga, On the tautological ring of \({\mathcal{M}}_{g}\), Invent. Math. 121 (1995), 411-419. · Zbl 0851.14017 · doi:10.1007/BF01884306
[29] E. Looijenga and V. Lunts, A Lie algebra attached to a projective variety , Invent. Math. 129 (1997), 361-412. · Zbl 0890.53030 · doi:10.1007/s002220050166
[30] M. Melo and F. Viviani, Comparing perfect and 2nd Voronoi decompositions: The matroidal locus , Math. Ann. 354 (2012), 1521-1554. · Zbl 1264.11050 · doi:10.1007/s00208-011-0774-9
[31] .2 B. Moonen, On the Chow motive of an abelian scheme with non-trivial endomorphisms , preprint, [math.AG]. 1110.4264v2
[32] F. Müller, The pullback of a theta divisor to \({\mathcal{M}}_{g,n}\), preprint, [math.AG]. 1203.3102v3
[33] D. Mumford, “On the Kodaira dimension of the Siegel modular variety” in Algebraic Geometry-Open Problems (Ravello, 1982) , Lecture Notes in Math. 997 , Springer, Berlin, 1983, 348-375. · Zbl 0527.14036 · doi:10.1007/BFb0061652
[34] Y. Namikawa, Toroidal Compactification of Siegel Spaces , Lecture Notes in Math. 812 , Springer, Berlin, 1980. · Zbl 0466.14011
[35] R. Pandharipande and A. Pixton, Relations in the tautological ring of the moduli space of curves , preprint, [math.AG]. 1301.4561v1
[36] R. Pandharipande, A. Pixton, and D. Zvonkine, Relations on \(\overline{\mathcal{M}}_{g,n}\) via \(3\)-spin structures , preprint, [math.AG]. 1303.1043v2 · Zbl 1315.14037 · doi:10.4171/119-1/17
[37] D. Petersen and O. Tommasi, The Gorenstein conjecture fails for the tautological ring of \(\overline{\mathcal{M}}_{2,n}\) , preprint, [math.AG]. 1210.5761v1 · Zbl 1295.14030 · doi:10.1007/s00222-013-0466-z
[38] A. Polishchuk, Biextension, Weil representation on derived categories, and theta functions , Ph.D. dissertation, Harvard University, Cambridge, Mass., 1996. · Zbl 0886.14019
[39] N. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties , Invent. Math. 163 (2006), 25-45. · Zbl 1088.14011 · doi:10.1007/s00222-005-0453-0
[40] G. Thompson, Skew invariant theory of symplectic groups, pluri-Hodge groups and 3-manifold invariants , Int. Math. Res. Not. IMRN 2007 , no. 15, Art. ID rnm 048. · Zbl 1143.53072
[41] C. Voisin, Chow rings and decomposition theorems for K3 surfaces and Calabi-Yau hypersurfaces , Geom. Topol. 16 (2012), 433-473. · Zbl 1253.14005
[42] C. Voisin, Chow Rings, Decomposition of the Diagonal, and the Topology of Families , Ann. Math. Stud. 187 , Princeton Univ. Press, Princeton, 2014. · Zbl 1288.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.