×

Comparing perfect and 2nd Voronoi decompositions: the matroidal locus. (English) Zbl 1264.11050

This paper expands on a recent remarkable paper in the subject of combinatorial compactifications of the moduli space of abelian varieties [V. Alexeev and A. Brunyate, Invent. Math. 188, No. 1, 175–196 (2012; Zbl 1242.14042)]. Pioneering work of Mumford and others from the 70s showed how to apply the general theory of toroidal embeddings, a method of compactifying a variety closely related to – in fact, étale locally modelled on – the way a toric variety uses a fan to compactify a torus, to the moduli space \(\mathcal{A}_g\) of \(g\)-dimensional principally polarized varieties. The combinatorics in this case concern the space of rank \(g\) real positive definite quadratic forms (more precisely, its “closure” given by positive semi-definite forms with null space defined over \(\mathbb{Q}\)). Since the Deligne-Mumford compactification \(\overline{\mathcal{M}}_g\) of the moduli space of curves is toroidal, the relation between this stack and these toroidal compactifications of \(\mathcal{A}_g\) then becomes a combinatorial game. For instance, the classical Torelli map \(\mathcal{M}_g \rightarrow \mathcal{A}_g\) sending a curve to its (principally polarized) Jacobian can be enlarged to a morphism from the moduli of stable curves to a particular compactification of the moduli of abelian varieties if and only if the combinatorics of the latter are sufficiently compatible with those of the former.
There are three known toroidal compactifications of \(\mathcal{A}_g\) in general, two of which are the key characters in the present paper: the perfect cone compactification (sometimes called “first Voronoi”) and the 2nd Voronoi compactification. Mumford and Namikawa gave a combinatorial argument that for the latter one indeed has an extension of the Torelli morphism. Amazingly, the combinatorics required to address this question in the former case remained unsolved until the very recent above cited work of Alexeev-Brunyate (written at the beginning of Brunyate’s graduate studies under Alexeev) where they showed that indeed there is an extension (and, remarkably, for the third compactification, the “central cones”, there is not for large enough genus!). Additionally, in their paper, they provided a combinatorial criterion for two toroidal compactifications of \(\mathcal{A}_g\) to coincide on a Zariski open subset containing the image of \(\overline{\mathcal{M}}_g\) and showed that this is satisfied in the case of the first and second Voronoi. At the conclusion of their paper, they mention that the combinatorial methods they introduce and use in their proof might extend to a larger, so called “matroidal” locus, thus giving a larger open subset on which the two compactifications agree.
The authors of the present paper interpret this remark as a conjecture and show that it indeed holds. In fact, they show that in a certain sense this matroidal locus is the “largest” locus where the compactifications coincide, suitably interpreted. Due to the machinery developed by Mumford et al., and further developed in this specific setting by Alexeev-Brunyate, there is absolutely no geometry required in the present paper: it truly is a purely combinatorial paper which has a very nice geometric consequence. The key ingredient in their proof is a combinatorial result due to Seymour from 1980 concerning decompositions of regular matroids – a result that makes no mention of abelian varieties whatsoever. Indeed, the authors argument is in essence a reduction to (a slight modification of) Seymour’s result that allows them to bootstrap up from rather elementary/well-known combinatorial statements to the ones needed to establish the Alexeev-Brunyate result.
The paper begins with a very elementary and readable exposition of the combinatorial objects involved in these toroidal compactifications, perhaps useful to an algebraic geometer not familiar with the area, classical though it may be, then has their main argument, and concludes with the geometric applications concerning Torelli. The writing throughout is quite clean and well-organized and gives nice motivation and context for all the results and techniques they use.

MSC:

11G10 Abelian varieties of dimension \(> 1\)
11H55 Quadratic forms (reduction theory, extreme forms, etc.)
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
14H42 Theta functions and curves; Schottky problem

Citations:

Zbl 1242.14042

References:

[1] Alexeev V.: Complete moduli in the presence of semiabelian group action. Ann. Math. 155, 611–708 (2002) · Zbl 1052.14017 · doi:10.2307/3062130
[2] Alexeev V.: Compactified Jacobians and Torelli map. Publ. RIMS Kyoto Univ. 40, 1241–1265 (2004) · Zbl 1079.14019 · doi:10.2977/prims/1145475446
[3] Alexeev, V., Brunyate, A.: Extending Torelli map to toroidal compactifications of Siegel space. Invent. Math. (2011). doi: 10.1007/s00222-011-0347-2 . arXiv:1102.3425 · Zbl 1242.14042
[4] Alexeev, V., Livingston, R., Tenini, J., Arap, M., Hu, X., Huckaba, L., Mcfaddin, P., Musgrave, S., Shin, J., Ulrich, C.: Extended Torelli map to the Igusa blowup in genus 6, 7, and 8. Exp. Math. (to appear). arXiv:1105.4384v1 · Zbl 1246.14037
[5] Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactification of locally symmetric varieties. Lie Groups: History, Frontiers and Applications, vol. IV. Math. Sci. Press, Brookline (1975) · Zbl 0334.14007
[6] Baranovskii E., Grishukhin V.: Non-rigidity degree of a lattice and rigid lattices. Eur. J. Combin. 22, 921–935 (2001) · Zbl 0995.52009 · doi:10.1006/eujc.2001.0510
[7] Barnes E.S., Trenery D.W.: A class of extreme lattice-coverings of n-space by spheres. J. Aust. Math. Soc. 14, 247–256 (1972) · Zbl 0244.10026 · doi:10.1017/S1446788700010089
[8] Brannetti S., Melo M., Viviani F.: On the tropical Torelli map. Adv. Math. 226, 2546–2586 (2011) · Zbl 1218.14056 · doi:10.1016/j.aim.2010.09.011
[9] Brylawski T.: Modular constructions for combinatorial geometries. Trans. AMS 203, 1–44 (1975) · Zbl 0299.05023 · doi:10.1090/S0002-9947-1975-0357163-6
[10] Caporaso L., Viviani F.: Torelli theorem for stable curves. J. Eur. Math. Soc. 13(5), 1289–1329 (2011) · Zbl 1230.14037 · doi:10.4171/JEMS/281
[11] Danilov V., Grishukhin V.: Maximal unimodular systems of vectors. Eur. J. Combin. 20, 507–526 (1999) · Zbl 0933.15004 · doi:10.1006/eujc.1999.0298
[12] Deligne P., Mumford D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[13] Deza M., Grishukhin V.: Nonrigidity degree of root lattices and their duals. Geom. Dedicata 104, 15–24 (2004) · Zbl 1073.11044 · doi:10.1023/B:GEOM.0000022863.32544.81
[14] Dickson T.J.: On Voronoi reduction of positive quadratic forms. J. Number Theory 4, 330–341 (1972) · Zbl 0251.10023 · doi:10.1016/0022-314X(72)90068-6
[15] Diestel, R.: Graph theory. Graduate Text in Mathematics, vol. 173. Springer, Berlin (1997) · Zbl 0873.05001
[16] Dutour, M., Vallentin, F.: Some six-dimensional rigid forms. In: Syta, H., Yurachivsky, A., Engel, P. (eds.) Proceedings of the Conference ”Voronoi’s Impact on Modern Science”, Institute of Math., Kyiv 2005. Proc. Inst. Math. Nat. Acad. Sci. Ukraine, vol. 55. arXiv:math/0401191 · Zbl 1142.52305
[17] Engel P., Grishukhin V.: An example of a non-simplicial L-type domain. Eur. J. Combin. 22, 491–496 (2001) · Zbl 1014.51011 · doi:10.1006/eujc.2000.0478
[18] Erdahl R.M., Ryshkov S.S.: On lattice dicing. Eur. J. Combin. 15, 459–481 (1994) · Zbl 0809.52019 · doi:10.1006/eujc.1994.1049
[19] Erdahl, R., Rybnikov, K.: Voronoi-Dickson hypothesis on perfect forms and L-types. Preprint. arXiv:math/0112097 · Zbl 1126.11324
[20] Erdahl, R., Rybnikov, K.: On Voronoi’s two tilings of the cone of metrical forms. In: IV International Conference in Stochastic Geometry, Convex Bodies, Empirical Measures & Applications to Engineering Science”, vol. I (Tropea, 2001). Rend. Circ. Mat. Palermo (2) Suppl. No. 70, pp. 279–296 (2002) · Zbl 1116.52006
[21] Faltings, G., Chai, C.L.: Degeneration of abelian varieties. With an appendix by David Mumford. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 22. Springer, Berlin (1990) · Zbl 0744.14031
[22] Gelfand, I., Kapranov, M., Zelevinsky, A.V.: Discriminants, resultants and multidimensional determinants. (Reprint of the 1994 edition). Modern Birkhäuser Classics. Birkhäuser Boston, Boston (2008) · Zbl 1138.14001
[23] Gibney, A.: On extension of the Torelli map. Preprint. arXiv:1104.3788 · Zbl 1317.14034
[24] Gwena T.: Degenerations of cubic threefolds and matroids. Proc. Am. Math. Soc. 133, 1317–1323 (2005) · Zbl 1072.14033 · doi:10.1090/S0002-9939-04-07689-0
[25] Koecher, M.: Beiträge zu einer Reduktionstheorie in Positivitätsbereichen I–II. Math. Ann. 141, 384–432 (1960); 144, 175–182 (1961) · Zbl 0095.25301
[26] Korkine A., Zolotarev G.: Sur le formes quadratiques positives. Math. Ann. 11, 242–292 (1877) · JFM 09.0139.01 · doi:10.1007/BF01442667
[27] Igusa J.: A desingularization problem in theory of Siegel modular functions. Math. Ann. 168, 228–260 (1967) · Zbl 0145.09702 · doi:10.1007/BF01361555
[28] Martinet, J.: Perfect lattices in Euclidean spaces. Grundlehren der Mathematischen Wissenschaften 327. Springer, Berlin (2003) · Zbl 1017.11031
[29] McMullen P.: Space tilings zonotopes. Mathematika 22, 202–211 (1975) · Zbl 0316.52005 · doi:10.1112/S0025579300006082
[30] Minkowsky, H.: Zur Theorie der positiven quadratischen Formen. J. für Math. CI. 196–202 (1887) · JFM 19.0189.01
[31] Namikawa Y.: On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform. Nagoya Math. J. 52, 197–259 (1973) · Zbl 0271.14014
[32] Namikawa, Y.: A new compactification of the Siegel space and degenerations of abelian varieties I–II. Math. Ann. 221, 97–141, 201–241 (1976) · Zbl 0306.14016
[33] Namikawa, Y.: Toroidal compactification of Siegel spaces. Lecture Notes in Mathematics, vol. 812. Springer, Berlin (1980) · Zbl 0466.14011
[34] Olsson, M.C.: Compactifying moduli spaces for abelian varieties. Lecture Notes in Mathematics, vol. 1958. Springer, Berlin (2008) · Zbl 1165.14004
[35] Oxley, J.G.: Matroid theory. Oxford Graduate Texts in Mathematics 3. Oxford Science Publications (1992)
[36] Seymour P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980) · Zbl 0443.05027 · doi:10.1016/0095-8956(80)90075-1
[37] Shephard G.C.: Space-filling zonotopes. Mathematika 21, 261–269 (1974) · Zbl 0296.52004 · doi:10.1112/S0025579300008652
[38] Shepherd-Barron N.I.: Perfect forms and the moduli space of abelian varieties. Invent Math. 163, 25–45 (2006) · Zbl 1088.14011 · doi:10.1007/s00222-005-0453-0
[39] Vallentin, F.: Sphere coverings, lattices and tilings (in low dimensions). Ph.D. thesis, Technische Universität München. (2003). http://tumb1.ub.tum.de/publ/diss/ma/2003/vallentin.pdf
[40] Voronoi, G.F.: Nouvelles applications des paramétres continus á la théorie de formes quadratiques-Deuxiéme mémoire. J. für die reine und angewandte Mathematik 134, 198–287 (1908); 136, 67–178 (1909)
[41] Ziegler, G.: Lectures on polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995) · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.