×

Chow rings and decomposition theorems for \(K3\) surfaces and Calabi-Yau hypersurfaces. (English) Zbl 1253.14005

Let \(\pi:\mathcal{X}\rightarrow B\) be a smooth projective morphism. As a consequence of the hard Lefschetz theorem, P. Deligne [Publ. Math., Inst. Hautes Étud. Sci. 35, 107–126 (1968; Zbl 0159.22501)] established the following decomposition (\(\ast\)) \[ R\pi_\ast\mathbb{Q} = \bigoplus_i R^i\pi_\ast \mathbb{Q}[-i] \] in the derived category of sheaves of \(\mathbb{Q}\)-vector spaces on \(B\). Such a decomposition is usually not canonical. In the decomposition (\(\ast\)), each side carries a multiplicative structure. On the right hand side, it is simply the direct sum of the cup product maps \(\mu_{i,j}:R^i\pi_\ast \mathbb{Q} \otimes R^j\pi_\ast\mathbb{Q} \rightarrow R^{i+j}\pi_\ast \mathbb{Q}\). On the left hand side, one takes a complex \(C^\ast\) representing \(R\pi_\ast\mathbb{Q}\) together with a morphism \(\mu:C^\ast\otimes C^\ast\rightarrow C^\ast\) which induces the cup product on cohomology. With the above multiplicative structures, the author of the paper under review asks if a multiplicative decomposition (\(\ast\)) (meaning a decomposition which respects the multiplicative structures) exists or not. It is shown that in general, the answer is negative, even after restricting to a Zariski open subset of \(B\). The main result (Theorem 0.7) of the paper is the existence of a decomposition (\(\ast\)) for a family of \(K3\) surfaces which becomes multiplicative after restricting to a Zariski open subfamily. To be more precise, assume that the fibers of \(\mathcal{X}\rightarrow B\) are all \(K3\) surfaces, then the author shows the following:
(i) There exists a decomposition (\(\ast\)) and a Zariski open subset \(B^\circ \) of \(B\) such that the decomposition becomes multiplicative for the restricted family \(\pi^\circ:\mathcal{X}^\circ\rightarrow B^\circ\);
(ii) The class of the relative diagonal \([\Delta_{\mathcal{X}^\circ / B^\circ}]\in \mathrm{H}^4(\mathcal{X}^\circ \times_{B^\circ} \mathcal{X}^\circ,\mathbb{Q})\) belongs to the direct summand \(\mathrm{H}^0(B^\circ, R^4(\pi, \pi)_\ast \mathbb{Q})\) of \(\mathrm{H}^4(\mathcal{X}^\circ \times_{B^\circ} \mathcal{X}^\circ,\mathbb{Q})\) under the induced decomposition of \(R(\pi,\pi)_\ast \mathbb{Q}\);
(iii) The topological first Chern class of a line bundle, restricted to \(\mathcal{X}^\circ\), belongs to the direct summand \(\mathrm{H}^0(B^\circ, R^2\pi_\ast \mathbb{Q})\) of \(\mathrm{H}^0(\mathcal{X}^\circ, \mathbb{Q})\) induced by this decomposition.
The author also discusses a geometric consequence of the main theorem which can be viewed as an evidence of the Conjecture 1.3 of [C. Voisin, Pure Appl. Math. Q. 4, No. 3, 613–649 (2008; Zbl 1165.14012)]. She gives two proofs of the main theorem. The first proof uses the concept of \(K\)-correspondences of C. Voisin [in: The Fano conference. Papers of the conference organized to commemorate the 50th anniversary of the death of Gino Fano (1871–1952), Torino, Italy, September 29–October 5, 2002. Torino: Università di Torino, Dipartimento di Matematica. 761–792 (2004; Zbl 1177.14040)]. The second proof heavily uses the result of [A. Beauville and C. Voisin, J. Algebr. Geom. 13, No. 3, 417–426 (2004; Zbl 1069.14006)]. In the last part, the author explores the possibility of generalizing the main theorem above to families of Calabi-Yau hypersurfaces. In particular, she proves an analogue for Calabi-Yau hypersurfaces of the result of Beauville and Voisin [loc. cit.]. A second ingredient needed for the generalization is stated as a conjecture in the end of the paper.

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14D99 Families, fibrations in algebraic geometry

References:

[1] A Beauville, On the splitting of the Bloch-Beilinson filtration (editors J Nagel, C Peters), London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38 · Zbl 1130.14006
[2] A Beauville, C Voisin, On the Chow ring of a \(K`3\) surface, J. Algebraic Geom. 13 (2004) 417 · Zbl 1069.14006 · doi:10.1090/S1056-3911-04-00341-8
[3] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235 · Zbl 0525.14003 · doi:10.2307/2374341
[4] P Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968) 259 · Zbl 0159.22501 · doi:10.1007/BF02698925
[5] P Deligne, Décompositions dans la catégorie dérivée (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 115 · Zbl 0809.18008
[6] C Deninger, J Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201 · Zbl 0745.14003
[7] W Fulton, Intersection theory, Ergeb. Math. Grenzgeb. 2, Springer (1984) · Zbl 0541.14005
[8] R Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. 1252, Hermann (1964) · Zbl 0080.16201
[9] D Huybrechts, A note on the Bloch-Beilinson conjecture for \(K`3\) surfaces and spherical objects, Pure Appl. Math. Q. 7 (2011) 1395 · Zbl 1316.14035 · doi:10.4310/PAMQ.2011.v7.n4.a14
[10] D Mumford, Rational equivalence of \(0\)-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195 · Zbl 0228.14005
[11] J P Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990) 190 · Zbl 0698.14032 · doi:10.1515/crll.1990.409.190
[12] C Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Studies in Adv. Math. 77, Cambridge Univ. Press (2003) · Zbl 1032.14002 · doi:10.1017/CBO9780511615177
[13] C Voisin, Intrinsic pseudo-volume forms and \(K\)-correspondences (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 761 · Zbl 1177.14040
[14] C Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613 · Zbl 1165.14012 · doi:10.4310/PAMQ.2008.v4.n3.a2
[15] C Voisin, Chow rings, decomposition of the diagonal and the topology of families, to appear in the Annals of Math. Studies, Princeton Univ. Press (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.