×

On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. (English) Zbl 1301.35092

Author’s abstract: We consider the Navier-Stokes equations for viscous incompressible flows in the half-plane under the no-slip boundary condition. By using the vorticity formulation we prove the local-in-time convergence of the Navier-Stokes flows to the Euler flows outside a boundary layer and to the Prandtl flows in the boundary layer in the inviscid limit when the initial vorticity is located away from the boundary.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35A10 Cauchy-Kovalevskaya theorems

References:

[1] Abidi, Optimal bounds for the inviscid limit of Navier-Stokes equations, Asymptot. Anal. 38 (1) pp 35– (2004) · Zbl 1092.35075
[2] Alexandre, Well-posedness of the Prandtl equation in Sobolev spaces (2012)
[3] Anderson, Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows, J. Comput. Phys. 80 (1) pp 72– (1989) · Zbl 0656.76034 · doi:10.1016/0021-9991(89)90091-0
[4] Asano, Zero-viscosity limit of the incompressible Navier-Stokes equation. II. Mathematical analysis of fluid and plasma dynamics, I (Kyoto, 1986), Sūrikaisekikenkyūsho Kōkyūroku 656 pp 105– (1988)
[5] Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40 pp 769– (1972) · Zbl 0249.35070 · doi:10.1016/0022-247X(72)90019-4
[6] Beale, Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp. 37 (156) pp 243– (1981) · Zbl 0518.76027 · doi:10.1090/S0025-5718-1981-0628693-0
[7] Bona, The zero-viscosity limit of the 2D Navier-Stokes equations, Stud. Appl. Math. 109 (4) pp 265– (2002) · Zbl 1141.35431 · doi:10.1111/1467-9590.t01-1-00223
[8] Carlen, Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation, Duke Math. J. 81 (1) pp 135– (1995) · Zbl 0859.35011 · doi:10.1215/S0012-7094-95-08110-1
[9] Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Comm. Partial Differential Equations 21 (11-12) pp 1771– (1996)
[10] Constantin, Inviscid limit for vortex patches, Nonlinearity 8 (5) pp 735– (1995) · Zbl 0832.76011 · doi:10.1088/0951-7715/8/5/005
[11] Constantin, The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45 (1) pp 67– (1996) · Zbl 0859.76015 · doi:10.1512/iumj.1996.45.1960
[12] Danchin, Poches de tourbillon visqueuses, J. Math. Pures Appl. (9) 76 (7) pp 609– (1997) · Zbl 0903.76020 · doi:10.1016/S0021-7824(97)89964-3
[13] Ebin, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 pp 102– (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[14] Gallay, Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal. 200 (2) pp 445– (2011) · Zbl 1229.35177 · doi:10.1007/s00205-010-0362-2
[15] Gérard-Varet, On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc. 23 (2) pp 591– (2010) · Zbl 1197.35204 · doi:10.1090/S0894-0347-09-00652-3
[16] Gérard-Varet, Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal. 77 (1-2) pp 71– (2012)
[17] Giga, Nonlinear partial differential equations. Asymptotic behavior of solutions and self-similar solutions (2010) · Zbl 1215.35001
[18] Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (9) pp 1067– (2000) · Zbl 1048.35081 · doi:10.1002/1097-0312(200009)53:9<1067::AID-CPA1>3.0.CO;2-Q
[19] Guo, A note on Prandtl boundary layers, Comm. Pure Appl. Math. 64 (10) pp 1416– (2011) · Zbl 1232.35126 · doi:10.1002/cpa.20377
[20] Hmidi, Régularité höldérienne des poches de tourbillon visqueuses. (French) [Hölder regularity of viscous vortex patches], J. Math. Pures Appl. (9) 84 (11) pp 1455– (2005) · Zbl 1095.35024 · doi:10.1016/j.matpur.2005.01.004
[21] Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz. 3 pp 1032– (1963)
[22] Kano, Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19 (2) pp 335– (1979) · Zbl 0419.76013
[23] Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 pp 188– (1967) · Zbl 0166.45302 · doi:10.1007/BF00251588
[24] Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Functional Analysis 9 pp 296– (1972) · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1
[25] Kato, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) pp 85– (1984) · doi:10.1007/978-1-4612-1110-5_6
[26] Kelliher, On Kato’s conditions for vanishing viscosity, Indiana Univ. Math. J. 56 (4) pp 1711– (2007) · doi:10.1512/iumj.2007.56.3080
[27] Kelliher, On the vanishing viscosity limit in a disk, Math. Ann. 343 (3) pp 701– (2009) · Zbl 1155.76020 · doi:10.1007/s00208-008-0287-3
[28] Kramer, Vorticity dynamics of a dipole colliding with a no-slip wall, Phys. Fluids 19 pp 126603– (2007) · Zbl 1182.76399 · doi:10.1063/1.2814345
[29] Kukavica, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci. 11 (1) pp 269– (2013) · Zbl 1291.35224 · doi:10.4310/CMS.2013.v11.n1.a8
[30] Lombardo, Well-posedness of the boundary layer equations, SIAM J. Math. Anal. 35 (4) pp 987– (2003) · Zbl 1053.76013 · doi:10.1137/S0036141002412057
[31] Lopes Filho, Vanishing viscosity limit for incompressible flow inside a rotating circle, Phys. D 237 (10-12) pp 1324– (2008) · Zbl 1143.76416 · doi:10.1016/j.physd.2008.03.009
[32] Lopes Filho, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. (N.S.) 39 (4) pp 471– (2008) · Zbl 1178.35288 · doi:10.1007/s00574-008-0001-9
[33] Maekawa, Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit, Adv. Differential Equations 18 (1-2) pp 101– (2013) · Zbl 1261.35111
[34] Majda, Cambridge Texts in Applied Mathematics 27 (2002)
[35] Marchioro, On the vanishing viscosity limit for two-dimensional Navier-Stokes equations with singular initial data, Math. Methods Appl. Sci. 12 (6) pp 463– (1990) · Zbl 0703.76020 · doi:10.1002/mma.1670120602
[36] Marchioro, On the inviscid limit for a fluid with a concentrated vorticity, Comm. Math. Phys. 196 (1) pp 53– (1998) · Zbl 0911.35086 · doi:10.1007/s002200050413
[37] Marchioro, Vortices and localization in Euler flows, Comm. Math. Phys. 154 (1) pp 49– (1993) · Zbl 0774.35058 · doi:10.1007/BF02096831
[38] Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Comm. Math. Phys. 270 (3) pp 777– (2007) · Zbl 1118.35030 · doi:10.1007/s00220-006-0171-5
[39] Masmoudi, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods (2012)
[40] Matsui, Example of zero viscosity limit for two-dimensional nonstationary Navier-Stokes flows with boundary, Japan J. Indust. Appl. Math. 11 (1) pp 155– (1994) · Zbl 0797.76011 · doi:10.1007/BF03167219
[41] Matsui, On separation points of solutions to Prandtl boundary layer problem, Hokkaido Math. J. 13 (1) pp 92– (1984) · Zbl 0569.76048 · doi:10.14492/hokmj/1381757739
[42] Mazzucato, Vanishing viscosity limits for a class of circular pipe flows, Comm. Partial Differential Equations 36 (2) pp 328– (2011) · Zbl 1220.35121 · doi:10.1080/03605302.2010.505973
[43] Nguyen van yen, Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity, Phys. Rev. Lett. 106 pp 184502– (2011) · doi:10.1103/PhysRevLett.106.184502
[44] Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 pp 561– (1972) · Zbl 0257.35001
[45] Nishida, A note on a theorem of Nirenberg, J. Differential Geom. 12 (4) pp 629– (1977)
[46] Oleĭnik, On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid, J. Appl. Math. Mech. 30 pp 951– (1966) · Zbl 0149.44804 · doi:10.1016/0021-8928(66)90001-3
[47] Orlandi, Vortex dipole rebound from a wall, Phys. Fluids A 2 pp 1429– (1990) · doi:10.1063/1.857591
[48] Safonov, The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space, Comm. Pure Appl. Math. 48 (6) pp 629– (1995) · Zbl 0836.35004 · doi:10.1002/cpa.3160480604
[49] Sammartino, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (2) pp 433– (1998) · Zbl 0913.35102 · doi:10.1007/s002200050304
[50] Sammartino, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (2) pp 463– (1998) · Zbl 0913.35103 · doi:10.1007/s002200050305
[51] Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations, Amer. Math. Soc. Transl. 75 (2) pp 1– (1968) · Zbl 0187.03402 · doi:10.1090/trans2/075/01
[52] Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc. 157 pp 373– (1971) · Zbl 0218.76023
[53] Temam, On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (3-4) pp 807– (1997) · Zbl 1043.35127
[54] Ukai, A solution formula for the Stokes equation in R+n, Comm. Pure Appl. Math. 40 (5) pp 611– (1987) · Zbl 0638.76040 · doi:10.1002/cpa.3160400506
[55] Wang, A Kato type theorem on zero viscosity limit of Navier-Stokes flows, Indiana Univ. Math. J. 50 (Special Issue) pp 223– (2001) · Zbl 0991.35059 · doi:10.1512/iumj.2001.50.2098
[56] Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37 (1) pp 698– (1933) · JFM 59.1447.02 · doi:10.1007/BF01474610
[57] Xin, On the global existence of solutions to the Prandtl’s system, Adv. Math. 181 (1) pp 88– (2004) · Zbl 1052.35135 · doi:10.1016/S0001-8708(03)00046-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.