Skip to main content
Log in

Interaction of Vortices in Weakly Viscous Planar Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the inviscid limit for the two-dimensional incompressible Navier–Stokes equation in the particular case where the initial flow is a finite collection of point vortices. We suppose that the initial positions and the circulations of the vortices do not depend on the viscosity parameter ν, and we choose a time T > 0 such that the Helmholtz–Kirchhoff point vortex system is well-posed on the interval [0, T]. Under these assumptions, we prove that the solution of the Navier–Stokes equation converges, as ν → 0, to a superposition of Lamb–Oseen vortices whose centers evolve according to a viscous regularization of the point vortex system. Convergence holds uniformly in time, in a strong topology which allows us to give an accurate description of the asymptotic profile of each individual vortex. In particular, we compute to leading order the deformations of the vortices due to mutual interactions. This makes it possible to estimate the self-interactions, which play an important role in the convergence proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Danchin R.: Optimal bounds for the inviscid limit of Navier–Stokes equations. Asymptot. Anal. 38, 35–46 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Beale T., Majda A.: Rates of convergence for viscous splitting of the Navier–Stokes equations. Math. Comput. 37, 243–259 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benfatto G., Esposito R., Pulvirenti M.: Planar Navier–Stokes flow for singular initial data. Nonlinear Anal. 9, 533–545 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caflisch, R., Sammartino, M.: Vortex layers in the small viscosity limit. In: WASCOM 2005—13th Conference on Waves and Stability in Continuous Media 59–70. World Scientific Publishing Company, Hackensack, 2006

  5. Carlen E.A., Loss M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier–Stokes equation. Duke Math. J. 81, 135–157 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chemin J.-Y.: A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differ. Equ. 21, 1771–1779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen P.-H., Wang W.-L.: Roll-up of a viscous vortex sheet. J. Chin. Inst. Eng. 14, 507–517 (1991)

    Article  MathSciNet  Google Scholar 

  8. Constantin P., Wu J.: Inviscid limit for vortex patches. Nonlinearity 8, 735–742 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Constantin P., Wu J.: The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J. 45, 67–81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cottet G.-H.: Équations de Navier–Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math. 303, 105–108 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Couder Y.: Observation expérimentale de la turbulence bidimensionnelle dans un film liquide mince. C. R. Acad. Sci. Paris II 297, 641–645 (1983)

    Google Scholar 

  12. Danchin R.: Poches de tourbillon visqueuses. J. Math. Pures Appl. 76, 609–647 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin R.: Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque. Bull. Soc. Math. France 127, 179–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delort J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebin D., Marsden J.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gallagher I., Gallay T.: Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity. Math. Ann. 332, 287–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallagher I., Gallay T., Lions P.-L.: On the uniqueness of the solution of the two-dimensional Navier���Stokes equation with a Dirac mass as initial vorticity. Math. Nachr. 278, 1665–1672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallay T., Wayne C.E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \({{\mathbb R}^2}\). Arch. Rational Mech. Anal. 163, 209–258 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gallay T., Wayne C.E.: Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Comm. Math. Phys. 255, 97–129 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gallay T., Wayne C.E.: Existence and stability of asymmetric Burgers vortices. J. Math. Fluid Mech. 9, 243–261 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Giga Y., Miyakawa T., Osada H.: Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223–250 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53, 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. von Helmholtz H.: Über Integrale des hydrodynamischen Gleichungen, welche die Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858)

    Article  MathSciNet  Google Scholar 

  24. Hmidi T.: Régularité höldérienne des poches de tourbillon visqueuses. J. Math. Pures Appl. 84, 1455–1495 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hmidi T.: Poches de tourbillon singulières dans un fluide faiblement visqueux. Rev. Mat. Iberoamericana 22, 489–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato T.: Nonstationary flows of viscous and ideal fluids in \({{\mathbb R}^3}\) . J. Funct. Anal. 9, 296–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato T.: The Navier–Stokes equation for an incompressible fluid in \({{\mathbb R}^2}\) with a measure as the initial vorticity. Differ. Integral Equ. 7, 949–966 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Kirchhoff G.R.: Vorlesungen über Mathematische Physik. Mekanik. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  29. Le Dizès S., Verga A.: Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389–410 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mc Williams J.C.: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43 (1984)

    Article  ADS  Google Scholar 

  31. Mc Williams J.C.: The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361–385 (1990)

    Article  ADS  Google Scholar 

  32. Maekawa, Y.: Spectral properties of the linearization at the Burgers vortex in the high rotation limit. J. Math. Fluid Mech. (to appear)

  33. Maekawa Y.: On the existence of Burgers vortices for high Reynolds numbers. J. Math. Anal. Appl. 349, 181–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maekawa Y.: Existence of asymmetric Burgers vortices and their asymptotic behavior at large circulations. Math. Models Methods Appl. Sci. 19, 669–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Majda A.: Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana Univ. Math. J. 42, 921–939 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marchioro C.: Euler evolution for singular initial data and vortex theory: a global solution. Comm. Math. Phys. 116, 45–55 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Marchioro C.: On the vanishing viscosity limit for two-dimensional Navier–Stokes equations with singular initial data. Math. Methods Appl. Sci. 12, 463–470 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Marchioro C.: On the inviscid limit for a fluid with a concentrated vorticity. Comm. Math. Phys. 196, 53–65 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Marchioro C., Pulvirenti M.: Vortices and localization in Euler flows. Comm. Math. Phys. 154, 49–61 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Marchioro C., Pulvirenti M.: Mathematical theory of incompressible nonviscous fluids. In: Applied Mathematical Sciences, vol. 96. Springer-Verlag, New York, 1994

  41. Masmoudi N.: Remarks about the inviscid limit of the Navier–Stokes system. Comm. Math. Phys. 270, 777–788 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Meunier P., Le Dizès S., Leweke T.: Physics of vortex merging. Comptes Rendus Physique 6, 431–450 (2005)

    Article  ADS  Google Scholar 

  43. Moffatt H.K., Kida S., Ohkitani K.: Stretched vortices—the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241–264 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  44. Nagem R., Sandri G., Uminsky D., Wayne C.E.: Generalized Helmholtz– Kirchhoff model for two-dimensional distributed vortex motion. SIAM J. Appl. Dyn. Syst. 8, 160–179 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Newton P.: The N-vortex problem. Analytical techniques. In: Applied Mathematical Sciences, vol. 145. Springer-Verlag, New York, 2001

  46. Osada H.: Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. 27, 597–619 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192, 433–461 (1998). II. Construction of the Navier–Stokes solution. Comm. Math. Phys. 192, 463–491 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Sueur, F.: Vorticity internal transition layers for the Navier–Stokes equations. Preprint 2008. arXiv:0812.2145

  49. Swann H.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in \({{\mathbb R}^3}\) . Trans. Am. Math. Soc. 157, 373–397 (1971)

    MathSciNet  MATH  Google Scholar 

  50. Ting, L., Klein, R.: Viscous vortical flows. In: Lecture Notes in Physics, vol. 374. Springer-Verlag, Berlin, 1991

  51. Ting L., Tung C.: Motion and decay of a vortex in a nonuniform stream. Phys. Fluids 8, 1039–1051 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Vishik M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. Ecole Norm. Sup. 32, 769–812 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yudovich V.: Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

  54. Yudovich V.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gallay.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallay, T. Interaction of Vortices in Weakly Viscous Planar Flows. Arch Rational Mech Anal 200, 445–490 (2011). https://doi.org/10.1007/s00205-010-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0362-2

Keywords

Navigation