×

Remarks about the inviscid limit of the Navier-Stokes system. (English) Zbl 1118.35030

Summary: We prove two results about the inviscid limit of the Navier-Stokes system. The first one concerns the convergence in \(H^{s}\) of a sequence of solutions to the Navier-Stokes system when the viscosity goes to zero and the initial data is in \(H^{s}\). The second result deals with the best rate of convergence for vortex patch initial data in 2 and 3 dimensions. We present here a simple proof which also works in the 3D case. The 3D case is new.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
Full Text: DOI

References:

[1] Abidi H., Danchin R. (2004). Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal. 38(1): 35–46 · Zbl 1092.35075
[2] Beirão da Veiga H. (1994). On the singular limit for slightly compressible fluids. Calc. Var. Part. Differ. Eqs. 2(2): 205–218 · Zbl 0805.35009 · doi:10.1007/BF01191342
[3] Beirão da Veiga H. (1994). Singular limits in compressible fluid dynamics. Arch. Rat. Mech. Anal. 128(4): 313–327 · Zbl 0829.76073 · doi:10.1007/BF00387711
[4] Bertozzi A.L., Constantin P. (1993). Global regularity for vortex patches. Commun. Math. Phys. 152(1): 19–28 · Zbl 0771.76014 · doi:10.1007/BF02097055
[5] Bona J.L., Smith R. (1975). The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278(1287): 555–601 · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[6] Bony J.-M. (1981). Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2): 209–246
[7] Chemin J.-Y. (1993). Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4) 26(4): 517–542 · Zbl 0779.76011
[8] Chemin J.-Y. (1995). Fluides parfaits incompressibles. Astérisque 230: 177 · Zbl 0829.76003
[9] Chemin J.-Y. (1996). A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Part. Differ. Eqs. 21(11-12): 1771–1779 · Zbl 0876.35087 · doi:10.1080/03605309608821245
[10] Constantin P. (1986). Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Commun. Math. Phys. 104(2): 311–326 · Zbl 0655.76041 · doi:10.1007/BF01211598
[11] Constantin P., Wu J. (1995). Inviscid limit for vortex patches. Nonlinearity 8(5): 735–742 · Zbl 0832.76011 · doi:10.1088/0951-7715/8/5/005
[12] Constantin P., Wu J. (1996). The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J. 45(1): 67–81 · Zbl 0859.76015 · doi:10.1512/iumj.1996.45.1960
[13] Danchin R. (1999). Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque. Bull. Soc. Math. France 127(2): 179–227 · Zbl 0937.35124
[14] Dutrifoy A. (2003). On 3-D vortex patches in bounded domains. Comm. Part. Differ. Eqs. 28(7-8): 1237–1263 · Zbl 1030.76011 · doi:10.1081/PDE-120024362
[15] Gamblin P., Saint Raymond X. (1995). On three-dimensional vortex patches. Bull. Soc. Math. France 123(3): 375–424 · Zbl 0844.76013
[16] Huang C. (2001). Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J. 50(1): 509–552 · Zbl 0993.35077 · doi:10.1512/iumj.2001.50.1802
[17] Kato T. (1972). Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9: 296–305 · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1
[18] Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448. Berlin: Springer, 1975, pp. 25–70
[19] Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Volume 27 of Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002 · Zbl 0983.76001
[20] Masmoudi N. (1998). The Euler limit of the Navier-Stokes equations and rotating fluids with boundary. Arch. Rat. Mech. Anal. 142(4): 375–394 · Zbl 0915.76017 · doi:10.1007/s002050050097
[21] Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Handbook of Differential Equations, Vol. 3, pp. 195–275. North-Holland, Amsterdam (2007) · Zbl 1205.35230
[22] Swann H.S.G. (1971). The convergence with vanishing viscosity of nonstationary Nvier–Stokes flow to ideal flow in R 3. Trans. Amer. Math. Soc. 157: 373–397 · Zbl 0218.76023
[23] Wolibner W. (1933). Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1): 698–726 · JFM 59.1447.02 · doi:10.1007/BF01474610
[24] Yudovich V.I. (1963). Non-stationary flows of an ideal incompressible fluid. u Z. Vy cisl. Mat. i Mat. Fiz. 3: 1032–1066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.