×

Two reliable wavelet methods to Fitzhugh-Nagumo (FN) and fractional FN equations. (English) Zbl 1286.65131

Summary: Fractional reaction-diffusion equations serve as more relevant models for studying complex patterns in several fields of nonlinear sciences. In this paper, we have developed the wavelet methods to find the approximate solutions for the Fitzhugh-Nagumo (FN) and fractional FN equations. The proposed method techniques provide the solutions in rapid convergence series with computable terms. To the best of our knowledge, until now there is no rigorous wavelet solutions have been reported for the FN and fractional FN equations arising in gene propagation and model. With the help of Laplace operator and Legendre wavelets operational matrices, the FN equation is converted into an algebraic system. Finally, we have given some numerical examples to demonstrate the validity and applicability of the wavelet methods. The power of the manageable method is confirmed. Moreover, the use of the wavelet methods is found to be accurate, efficient, simple, low computation costs and computationally attractive.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
26A33 Fractional derivatives and integrals
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] S.Z. Rida, A.M.A. El-Sayed, A.A.M. Arafa, On the solutions of time-fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 5(12), 3847-3854 (2010) · Zbl 1222.65115
[2] A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis (Elsevier, Amsterdam, 1987) · Zbl 0609.65001
[3] J.D. Murray, Lectures on Non-linear Differential Equation Models in Biology (Clarenden, Oxford, 1977) · Zbl 0379.92001
[4] B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Physica A 276(3-4), 448-455 (2000)
[5] F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939-945 (2010) · Zbl 1221.74012
[6] B. Baeumer, M. Kovács, M.M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55(10), 2212-2226 (2008) · Zbl 1142.65422
[7] M.D. Bramson, Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531-581 (1978) · Zbl 0361.60052
[8] S. Momani, R. Qaralleh, Numerical approximations and Padé approximants for a fractional population growth model. Appl. Math. Model. 31(9), 1907-1914 (2007) · Zbl 1167.45300
[9] G. Hariharan, The homotopy analysis method applied to the Kolmogorov-Petrovskii-Piskunov (KPP) and fractional KPP equations. J. Math. Chem. 51, 992-1000 (2013). doi:10.1007/s10910-012-0132-5 · Zbl 1402.92456 · doi:10.1007/s10910-012-0132-5
[10] S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A+\[B \rightarrow → C\] reaction-subdiffusion process. Phys. Rev. E. 69(3), part 2, Article ID 036126 (2004) · Zbl 1219.35246
[11] D.J. Aronson, H.F. Weinberg, Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation (Springer, New York, 1988)
[12] R. Fitzhugh, Impulse and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445-466 (1961)
[13] R. Fitzhugh, Biological Engineering (McGraw-Hill, New York, 1969), pp. 1-85
[14] K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phys. 119, 2165-2174 (2003) · Zbl 1185.86002
[15] N.A. Khan, N.-U. Khan, A. Ara, M. Jamil, Approximate analytical solutions of fractional reaction-diffusion equations. J. King Saud Univ. Sci. 24, 111-118 (2012)
[16] A. Slavova, P. Zecca, CNN model for studying dynamics and traveling wave solutions of FitzHugh-Nagumo equation. J. Comput. Appl. Math. 151, 13-24 (2003) · Zbl 1049.92005
[17] A.L. Hodgkin, A.F. Huxley, Aquantitive description of membrane current and its application th conduction and excitation in nerve. J. Physiol. 117, 500 (1952)
[18] A. Panfilov, P. Hogeweg, Spiral breakup in a modified Fitzhugh-Nagumo model. Phys. Lett. A 176, 295-299 (1993)
[19] J.S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061-2071 (1962)
[20] H.C. Rosu, O. Cornejo-Perez, Super symmetric pairing of kinks for polynomial nonlinearities. Phys. Rev. E 71, 1-13 (2005)
[21] G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284-292 (2009) · Zbl 1162.65394
[22] A.M. Wazwaz, A. Gorguis, An analytical study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154, 609-620 (2004) · Zbl 1054.65107
[23] D. Olmos, B. Shizgal, Pseudospectral method of solution of the Fitzhugh-Nagumo equation. Math. Comput. Simul. 79, 2258-2278 (2009) · Zbl 1166.65382
[24] D. Olmos, B. Shizgal, A spectral method of solution of Fisher’s equation. J. Comput. Appl. Math. 193, 219-242 (2006) · Zbl 1092.65088
[25] A.A. Soliman, Numerical simulation of the FitzHugh-Nagumo Equations. Abstr. Appl. Anal. Article ID 762516, (2012) 13 p. doi:10.1155/2012/762516 · Zbl 1246.65239
[26] S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (CRC Press/Chapman and Hall, Boca Raton, 2004) · Zbl 1051.76001
[27] S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706-2714 (2008) · Zbl 1167.35395
[28] G. Hariharan, K. Kannan, K. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119-225 (2009) · Zbl 1173.80307
[29] G. Hariharan, K. Kannan, Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48, 1044-1061 (2010) · Zbl 1207.35183
[30] G. Hariharan, K. Kannan, A comparative study of a Haar Wavelet Method and a Restrictive Taylor’s Series Method for solving Convection-diffusion Equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173-184 (2010) · Zbl 1230.65109
[31] G. Hariharan, K. Kannan, Haar wavelet method for solving FitzHugh-Nagumo Equation. World Acad. Sci. Eng. Technol. 43, 560-564 (2010)
[32] U. Lepik, Numerical solution of evolution equations by the Haar wavelet method. J. Appl. Math. Comput. 185, 695-704 (2007) · Zbl 1110.65097
[33] U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. Appl. 61, 1873-1879 (2011) · Zbl 1219.65169
[34] H. Jafari, M. Soleymanivaraki, M.A. Firoozjaee, Legendre wavelets for solving fractional differential equations. J. Appl. Math. 7(4), 65-70 (2011, Winter) · Zbl 0361.60052
[35] Y. Yang, Solving a nonlinear multi-order fractional differential equation using Legendre Pseudo-Spectral method. Appl. Math. 4, 113-118 (2013). doi:10.4236/am.2013.41020 · doi:10.4236/am.2013.41020
[36] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, F. Mohammadi, Wavelet collocation method for solving multiorder fractional differential equations. J. Appl. Math. Article ID 54240, (2012). doi:10.1155/2012/542401 · Zbl 1235.42034
[37] H.A. Abdusalam, Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation. Appl. Math. Comput. 157, 515-522 (2004) · Zbl 1054.65104
[38] D.Y. Chen, Y. Gu, Cole-Hopf quotient and exact solutions of the generalized Fitzhugh-Nagumo equations. Acta Math. Sci. 19(1), 7-14 (1999) · Zbl 0922.35032
[39] H. Li, Y. Guo, New exact solutions to the Fitzhugh-Nagumo equation. Appl. Math. Comput. 180, 524-528 (2006) · Zbl 1102.35315
[40] M. Shih, E. Momoniat, F.M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation. J. Math. Phys. 46, 023503 (2005) · Zbl 1076.35052
[41] V. Turut, N. Guzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations. ISRN Mathematical Analysis (2012) Article ID 737206. doi:10.5402/2012/737206 · Zbl 1250.65128
[42] W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650-654 (1992) · Zbl 1219.35246
[43] S.K. Elagan, M. Sayed, Y.S. Hamed, An innovative solutions for the generalized FitzHugh-Nagumo Equation by using the Generalized <InlineEquation ID=”IEq201“> <EquationSource Format=”TEX“>\[ \left( \text{ G }^{\prime }/\text{ G } \right)\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mfenced close=”)“ open=”(“ separators=”> G′/G-Expansion Method. Appl. Math. 2, 470-474 (2011)
[44] A. Hajipour, S.M. Mahmoudi, Application of Exp-function method to Fitzhugh-Nagumo equation. World Appl. Sci. J. 9(1), 113-117 (2010)
[45] K. Maleknejad, S. Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Appl. Math. Comput. 186, 836-843 (2007) · Zbl 1119.65126
[46] M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495-502 (2001) · Zbl 1006.65151
[47] M. Razzaghi, S. Yousefi, The Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185-192 (2000)
[48] F. Mohammadi, M.M. Hosseini, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787-1796 (2011) · Zbl 1237.65079
[49] H. Parsian, Two dimension Legendre wavelets and operational matrices of integration. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21, 101-106 (2005) · Zbl 1092.65021
[50] S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type. App. Math. Comput. 181, 1417-1442 (2006) · Zbl 1105.65080
[51] F. Yin, J. Song, F. Lu, H. Leng, A coupled method of Laplace transform and legendre wavelets for Lane-Emden-Type differential equations. J. Appl. Math. Article ID 163821 (2012). doi:10.1155/2012/163821 · Zbl 1264.65227
[52] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems. IEEE Proc. Part D 144(1), 87-94 (1997) · Zbl 0880.93014
[53] M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative. Int. J. Phys. Sci. 7(15), 2317-2326 (2012) · Zbl 1273.94389
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.