×

An analytic study of Fisher’s equation by using Adomian decomposition method. (English) Zbl 1054.65107

Summary: We develop a framework to obtain exact solutions to Fisher’s equation and to a nonlinear diffusion equation of the Fisher type by employing Adomian decomposition method. The proposed scheme is supported by examining nonlinear diffusion equations of the Fisher type.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
35K55 Nonlinear parabolic equations
Full Text: DOI

References:

[1] Rosenau, P.; Hyman, J. M., Compactons: Solitons with finite wavelengths, Phys. Rev. Lett., 70, 5, 564-567 (1993) · Zbl 0952.35502
[2] Rosenau, P., Nonlinear dispersion and compact structures, Phys. Rev. Lett., 73, 13, 1737-1741 (1994) · Zbl 0953.35501
[3] Rosenau, P., Compact and noncompact dispersive structures, Phys. Lett. A, 275, 3, 193-203 (2000) · Zbl 1115.35365
[4] Wazwaz, A. M., Partial Differential Equations: Methods and Applications (2002), Balkema Publishers: Balkema Publishers The Netherlands · Zbl 0997.35083
[5] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m,n)\) equations, Chaos, Solitons & Fractals, 13, 2, 321-330 (2002) · Zbl 1028.35131
[6] Wazwaz, A. M., Exact specific solutions with solitary patterns for the nonlinear dispersive \(K(m,n)\) equations, Chaos, Solitons & Fractals, 13, 1, 161-170 (2001) · Zbl 1027.35115
[7] Wazwaz, A. M., General compactons solutions for the focusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 213-227 (2002) · Zbl 1027.35117
[8] Wazwaz, A. M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput., 133, 2/3, 229-244 (2002) · Zbl 1027.35118
[9] Wazwaz, A. M., A study of nonlinear dispersive equations with solitary-wave solutions having compact support, Math. Comput. Simul., 56, 269-276 (2001) · Zbl 0999.65109
[10] Kawahara, T.; Tanaka, M., Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation, Phys. Lett. A, 97, 8, 311-314 (1983)
[11] Sherratt, J., On the transition from initial data traveling waves in the Fisher-KPP equation, Dyn. Stab. Syst., 13, 2, 167-174 (1998) · Zbl 0912.35084
[12] Brazhnik, P.; Tyson, J., On traveling wave solutions of Fisher’s equation in two spatial dimensions, SIAM J. Appl. Math., 60, 2, 371-391 (1999) · Zbl 0957.35065
[13] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 7, 650-654 (1992) · Zbl 1219.35246
[14] Wang, X. Y., Exact and explicit solitary wave solutions for the generalized Fisher equation, Phys. Lett. A, 131, 4/5, 277-279 (1988)
[15] Ablowitz, M.; Zepetella, A., Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biol., 41, 835-840 (1979) · Zbl 0423.35079
[16] Jone, D. S.; Sleeman, B. D., Differential Equations and Mathematical Biology (2003), Chapman& Hall/CRC: Chapman& Hall/CRC New York · Zbl 1020.92001
[17] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston, MA · Zbl 0802.65122
[18] Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501-544 (1988) · Zbl 0671.34053
[19] Adomian, G., On the solution of partial differential equations with specified boundary conditions, Mathl. Comput. Modell., 140, 2, 569-581 (1994) · Zbl 0678.65084
[20] A.M. Wazwaz, A. Gorguis, Exact solutions of heat-like and wave-like equations with variable coefficients, Appl. Math. Comput., in press; A.M. Wazwaz, A. Gorguis, Exact solutions of heat-like and wave-like equations with variable coefficients, Appl. Math. Comput., in press · Zbl 1038.65103
[21] Wazwaz, A. M., A First Course in Integral Equations (1997), World Scientific: World Scientific New Jersey · Zbl 0924.45001
[22] Wazwaz, A. M., The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation, Appl. Math. Comput., 105, 11-29 (1999) · Zbl 0956.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.