×

Wavelet collocation method for solving multiorder fractional differential equations. (English) Zbl 1235.42034

Summary: The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
35R11 Fractional partial differential equations

References:

[1] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, NY, USA, 1997. · Zbl 0917.73004
[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[3] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. · Zbl 0292.26011
[4] I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[5] I. Podlubny, “Fractional-order systems and fractional-order controllers,” Report UEF-03-94, Slovak Academy of Sciences, Institute of Experimental Physics, Kosice, Slovakia, 1994. · Zbl 1056.93542
[6] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics, vol. 378, pp. 223-276, Springer, Vienna, Austria, 1997.
[7] W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134-144, 1989. · Zbl 0692.45004 · doi:10.1063/1.528578
[8] Y. Li, “Solving a nonlinear fractional differential equation using Chebyshev wavelets,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2284-2292, 2010. · Zbl 1222.65087 · doi:10.1016/j.cnsns.2009.09.020
[9] K. Diethelm and N. J. Ford, “Multi-order fractional differential equations and their numerical solution,” Applied Mathematics and Computation, vol. 154, no. 3, pp. 621-640, 2004. · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2
[10] K. Diethelm and Y. Luchko, “Numerical solution of linear multi-term initial value problems of fractional order,” Journal of Computational Analysis and Applications, vol. 6, no. 3, pp. 243-263, 2004. · Zbl 1083.65064
[11] K. Diethelm, “Multi-term fractional differential equations multi-order fractional differential systems and their numerical solution,” Journal Européen des Systèmes Automatisés, vol. 42, pp. 665-676, 2008.
[12] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Computational & Applied Mathematics, vol. 23, no. 1, pp. 33-54, 2004. · Zbl 1213.34025 · doi:10.1590/S0101-82052004000100002
[13] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 683-699, 2005. · Zbl 1062.65073 · doi:10.1016/j.amc.2003.11.026
[14] A. M. A. El-Sayed, I. L. El-Kalla, and E. A. A. Ziada, “Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations,” Applied Numerical Mathematics, vol. 60, no. 8, pp. 788-797, 2010. · Zbl 1192.65092 · doi:10.1016/j.apnum.2010.02.007
[15] V. Daftardar-Gejji and H. Jafari, “Solving a multi-order fractional differential equation using Adomian decomposition,” Applied Mathematics and Computation, vol. 189, no. 1, pp. 541-548, 2007. · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[16] J. T. Edwards, N. J. Ford, and A. C. Simpson, “The numerical solution of linear multiterm fractional differential equations: systems of equations,” Manchester Center for Numerical Computational Mathematics, 2002. · Zbl 1019.65048
[17] K. Diethelm and N. J. Ford, “Numerical solution of the Bagley-Torvik equation,” BIT. Numerical Mathematics, vol. 42, no. 3, pp. 490-507, 2002. · Zbl 1035.65067
[18] J. L. Wu, “A wavelet operational method for solving fractional partial differential equations numerically,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 31-40, 2009. · Zbl 1169.65127 · doi:10.1016/j.amc.2009.03.066
[19] Ü. Lepik, “Solving fractional integral equations by the Haar wavelet method,” Applied Mathematics and Computation, vol. 214, no. 2, pp. 468-478, 2009. · Zbl 1170.65106 · doi:10.1016/j.amc.2009.04.015
[20] Y. Li and W. Zhao, “Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations,” Applied Mathematics and Computation, vol. 216, no. 8, pp. 2276-2285, 2010. · Zbl 1193.65114 · doi:10.1016/j.amc.2010.03.063
[21] M. U. Rehman and R. A. Khan, “The legendre wavelet method for solving fractional differential equations,” Communication in Nonlinear Science and Numerical Simulation, vol. 227, no. 2, pp. 234-244, 2009.
[22] N. M. Bujurke, S. C. Shiralashetti, and C. S. Salimath, “An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations,” Journal of Computational and Applied Mathematics, vol. 227, no. 2, pp. 234-244, 2009. · Zbl 1162.65040 · doi:10.1016/j.cam.2008.03.012
[23] E. Babolian, Z. Masouri, and S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions,” Computers & Mathematics with Applications, vol. 58, no. 2, pp. 239-247, 2009. · Zbl 1189.65306 · doi:10.1016/j.camwa.2009.03.087
[24] M. Tavassoli Kajani, A. Hadi Vencheh, and M. Ghasemi, “The Chebyshev wavelets operational matrix of integration and product operation matrix,” International Journal of Computer Mathematics, vol. 86, no. 7, pp. 1118-1125, 2009. · Zbl 1169.65072 · doi:10.1080/00207160701736236
[25] M. H. Reihani and Z. Abadi, “Rationalized Haar functions method for solving Fredholm and Volterra integral equations,” Journal of Computational and Applied Mathematics, vol. 200, no. 1, pp. 12-20, 2007. · Zbl 1107.65122 · doi:10.1016/j.cam.2005.12.026
[26] F. Khellat and S. A. Yousefi, “The linear Legendre mother wavelets operational matrix of integration and its application,” Journal of the Franklin Institute, vol. 343, no. 2, pp. 181-190, 2006. · Zbl 1127.65105 · doi:10.1016/j.jfranklin.2005.11.002
[27] M. Razzaghi and S. Yousefi, “The Legendre wavelets operational matrix of integration,” International Journal of Systems Science, vol. 32, no. 4, pp. 495-502, 2001. · Zbl 1006.65151 · doi:10.1080/002077201300080910
[28] A. Kilicman and Z. A. Al Zhour, “Kronecker operational matrices for fractional calculus and some applications,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 250-265, 2007. · Zbl 1123.65063 · doi:10.1016/j.amc.2006.08.122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.