×

Tensor ranks on tangent developable of Segre varieties. (English) Zbl 1282.14090

In the projective space that parametrizes tensors of given type (modulo scalar multiplication), the variety \(X\) of decomposable tensors corresponds to the Segre embedding of a product of lower-dimensional projective spaces. A general element in the first secant variety of \(X\) corresponds to a tensor of rank \(2\). However, the secant variety contains the tangent variety \(T(X)\) in its closure, and tensors in the tangent variety may have (and usually do have) larger rank. The aim of the authors is the study of the rank of tensors in \(T(X)\). They obtain a complete description, which is effectively computable, by looking at the Geometry of sets of points that evince the rank of a tensor \(t\in T(X)\). Similar results, but with a different approach, were obtained independently by J. Buczynski and J. M. Landsberg [Linear Algebra Appl. 438, No. 2, 668–689 (2013; Zbl 1268.15024)].

MSC:

14N05 Projective techniques in algebraic geometry

Citations:

Zbl 1268.15024

References:

[1] DOI: 10.1214/09-AOS689 · Zbl 1191.62003 · doi:10.1214/09-AOS689
[2] DOI: 10.1007/s00209-011-0907-6 · Zbl 1252.14032 · doi:10.1007/s00209-011-0907-6
[3] DOI: 10.1111/j.1460-9568.2009.06954.x · doi:10.1111/j.1460-9568.2009.06954.x
[4] Bernardi A, ISAAC 2011, Proceedings of the 36th International Symposium of Symbolic and Algebraic Computation pp 35– (2011)
[5] DOI: 10.1016/j.jsc.2010.08.001 · Zbl 1211.14057 · doi:10.1016/j.jsc.2010.08.001
[6] Bocci C, J. Algebraic Geom.
[7] DOI: 10.1016/j.laa.2010.06.046 · Zbl 1206.65141 · doi:10.1016/j.laa.2010.06.046
[8] DOI: 10.1007/BF01609871 · Zbl 0949.60018 · doi:10.1007/BF01609871
[9] Buczyński J, Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture · Zbl 1303.14056
[10] Buczyński J, Ranks of tensors and a generalization of secant varieties · Zbl 1268.15024
[11] Buczyński J, On the third secant variety · Zbl 1325.14069
[12] DOI: 10.1007/978-3-540-33275-6_15 · doi:10.1007/978-3-540-33275-6_15
[13] DOI: 10.1007/s10208-010-9077-x · Zbl 1211.14059 · doi:10.1007/s10208-010-9077-x
[14] DOI: 10.1137/060661569 · Zbl 1181.15014 · doi:10.1137/060661569
[15] Comon, P, Sorensen, M and Tsigaridas, E.Decomposing tensors with structured matrix factors reduces to rank-1 approximations, ICASSP’2010, Dallas, March 2010, pp. 14–19
[16] DOI: 10.1016/j.sigpro.2005.12.014 · Zbl 1186.94412 · doi:10.1016/j.sigpro.2005.12.014
[17] Georgi B, Context-specific independence mixture modeling for positional weight matrices, Bioinformatics 22 pp 166– (2006)
[18] DOI: 10.1016/S0022-4049(01)00032-9 · Zbl 1044.13004 · doi:10.1016/S0022-4049(01)00032-9
[19] Landsberg JM, American Mathematical Society, Providence, RI 2012
[20] DOI: 10.1007/s10208-003-0115-9 · Zbl 1068.14068 · doi:10.1007/s10208-003-0115-9
[21] DOI: 10.1112/blms/bdm049 · Zbl 1130.14041 · doi:10.1112/blms/bdm049
[22] McCullagh P, Tensor Methods in Statistics, Monographs on Statistics and Applied Probability (1987)
[23] DOI: 10.1109/TSP.2008.926982 · Zbl 1390.94333 · doi:10.1109/TSP.2008.926982
[24] Oeding L, Report on geometry and representation theory of tensors for computer science, statistics and other areas
[25] DOI: 10.1016/j.jpaa.2010.09.009 · Zbl 1226.14060 · doi:10.1016/j.jpaa.2010.09.009
[26] Sturmfels B, Binary cumulant varieties · Zbl 1274.13048
[27] Sylvester JJ, Comptes Rendus, Math. Acad. Sci. Paris 102 pp 1532– (1886)
[28] DOI: 10.1006/aama.2000.0692 · Zbl 0965.60026 · doi:10.1006/aama.2000.0692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.