×

Computing symmetric rank for symmetric tensors. (English) Zbl 1211.14057

Given a dimension \(n+1\) vector space \(V\) and a symmetric tensor \(T\in S^dV\), the symmetric rank of \(T\) is defined as the minimum integer \(r\) such that \(T\) can be written as the sum of \(r\) elements of the form \(v^{\otimes d}\) for some \(v\in V\).
Since the symmetric tensors with symmetric rank 1 can be identified, up to nonzero multiples, with the points of the Veronese variety of dimension \(n\) and degree \(d\), \(X_{n,d}\subset \mathbb{P}(S^dV)\), it follows that the \(r\)-th secant variety \(\sigma_r(X_{n,d})\) of the Veronese variety contains all the tensors of symmetric rank \(\leq r\). On the other hand, the secant variety contains also tensors which are limits of tensors of symmetric rank \(\leq r\) and which could have symmetric rank higher than \(r\).
In the paper under review the authors study the symmetric rank strata of the secant varieties to certain Veronese varieties and they give a complete description in the following cases:
\(\sigma_r(X_{1,d})\)
\(\sigma_2(X_{n,d})\)
\(\sigma_3(X_{n,d})\)
\(\sigma_r(X_{2,4})\) for \(r\leq5\).
In the first three cases they also give algorithms to compute the symmetric rank. Finally they study the rank of points on \(\sigma_2(\Gamma_{d+1})\) where \(\Gamma_{d+1}\) is an elliptic normal curve in \(\mathbb{P}^d\).
The main goal of this article is to give a purely geometric point of view on this kind of problems. In fact some of the results contained in the paper were partially known, but obtained with different approaches: see e.g. [G. Comas and M. Seiguer, “On the rank of a binary form”, arXiv:math/0112311; J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas, Linear Algebra Appl. 433, No. 11–12, 1851–1872 (2010; Zbl 1206.65141); J. M. Landsberg and Z. Teitler, Found. Comput. Math. 10, No. 3, 339–366 (2010; Zbl 1196.15024)].

MSC:

14N05 Projective techniques in algebraic geometry
15A69 Multilinear algebra, tensor calculus
14Q99 Computational aspects in algebraic geometry

Software:

CoCoA

References:

[1] Albera, Laurent; Chevalier, Pascal; Comon, Pierre; Ferreol, Anne, On the virtual array concept for higher order array processing, IEEE Trans. Signal Process., 53, 1254-1271 (2005) · Zbl 1370.94091
[2] Alexander, James; Hirschowitz, André, Polynomial interpolation in several variables, J. Algebraic Geom., 4, 201-222 (1995) · Zbl 0829.14002
[3] Arrondo, Enrique, Bernardi, Alessandra, 2009. On the variety parametrizing completely decomposable polynomials. Preprint, http://arxiv.org/abs/0903.2757; Arrondo, Enrique, Bernardi, Alessandra, 2009. On the variety parametrizing completely decomposable polynomials. Preprint, http://arxiv.org/abs/0903.2757 · Zbl 1211.14058
[4] Arrondo, Enrique; Paoletti, Raffaella, Characterization of Veronese varieties via projections in Grassmannians, (Geramita, Ciliberto; Ranestad, Mir-Roig, Projective Varieties with Unexpected Properties (2005), De Gruyter), 1-12 · Zbl 1101.14065
[5] Bernardi, Alessandra; Catalisano, Maria V.; Gimigliano, Alessandro; Idà, Monica, Osculating varieties of Veronesean and their higher secant varieties, Canad. J. Math., 59, 488-502 (2007) · Zbl 1118.14060
[6] Brachat, Jerome, Comon, Pierre, Mourrain, Bernard, Tsigaridas, Elias P., 2009. Symmetric tensors decomposition. Preprint, http://arxiv.org/abs/0901.3706; Brachat, Jerome, Comon, Pierre, Mourrain, Bernard, Tsigaridas, Elias P., 2009. Symmetric tensors decomposition. Preprint, http://arxiv.org/abs/0901.3706 · Zbl 1206.65141
[7] Brambilla, Maria C.; Ottaviani, Giorgio, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra, 212, 1229-1251 (2008) · Zbl 1139.14007
[8] Carlini, Enrico, Reducing the number of variables of a polynomial, (Elkadi, M.; Mourrain, B.; Piene, R., Algebraic Geometry and Geometric Modeling (2005), Springer), 237-247 · Zbl 1110.13019
[9] Catalisano, Maria V.; Geramita, Anthony V.; Gimigliano, Alessandro, On the ideals of Secant Varieties to certain rational varieties, J. Algebra, 319, 1913-1931 (2008) · Zbl 1142.14035
[10] Chevalier, Pascal, Optimal separation of independent narrow-band sources - concept and performance, Signal Process., 73, 27-48 (1999), special issue on blind separation and deconvolution · Zbl 0924.94016
[11] CoCoA Team, 2009. CoCoA: A system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it; CoCoA Team, 2009. CoCoA: A system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it
[12] Comon, Pierre, Independent component analysis, (Lacoume, J.-L., Higher Order Statistics (1992), Elsevier: Elsevier Amsterdam, London), 29-38 · Zbl 0791.62004
[13] Comon, Pierre, Tensor decompositions, (Mc Whirter, J. G.; Proudler, I. K., Math. Signal Processing V (2002), Clarendon Press: Clarendon Press Oxford, Uk), 1-24 · Zbl 1014.65007
[14] Comon, Pierre; Rajih, Myriam, Blind identification of under-determined mixtures based on the characteristic function, Signal Process., 86, 2271-2281 (2006) · Zbl 1172.65304
[15] Comas, Gonzalo, Seiguer, Malena, 2001. On the rank of a binary form. Preprint, http://arxiv.org/abs/math/0112311; Comas, Gonzalo, Seiguer, Malena, 2001. On the rank of a binary form. Preprint, http://arxiv.org/abs/math/0112311 · Zbl 1211.14059
[16] De Lathauwer, Lieven; Castaing, Josphine, Tensor-based techniques for the blind separation of ds-cdma signals, Signal Process., 87, 322-336 (2007) · Zbl 1186.94413
[17] De Lathauwer, Lieven; De Moor, Bart; Vandewalle, Joos, A multilinear singular value decomposiotion, SIAM J. Matrix Anal. Appl., 21, 1253-1278 (2000) · Zbl 0962.15005
[18] Dogaˇn, Mithat C.; Mendel, Jerry M., Applications of cumulants to array processing. I. aperture extension and array calibration, IEEE Trans. Signal Process., 43, 1200-1216 (1995)
[19] Geramita, Anthony V., Catalecticant varieties, (Van Oystaeyen, F., Commutative Algebra and Algebraic Geometry (Ferrara). Commutative Algebra and Algebraic Geometry (Ferrara), Lecture Notes in Pure and Applied Math., vol. 206 (1999), Dekker), 143-156 · Zbl 0957.13007
[20] Gherardelli, Francesco, Osservazioni su una classe di Varietá determinantali, Rend. Istituto Lombardo A, 130, 163-170 (1996) · Zbl 1184.14079
[21] Golub, Gene H.; Van Loan, Charles F., Matrix Computations (1983), John Hopkins: John Hopkins Baltimore MD · Zbl 0559.65011
[22] Iarrobino, Anthony A.; Kanev, Vassil, Power sums, Gorenstein algebras, and determinantal loci, (Lecture Notes in Mathematics, vol. 1721 (1999), Springer-Verlag: Springer-Verlag Berlin), Appendix C by Iarrobino and Steven L. Kleiman · Zbl 0942.14026
[23] Jiang, Tao; Sidiropoulos, Nicholas D., Kruskals permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models, IEEE Trans. Signal Process., 52, 2625-2636 (2004) · Zbl 1369.94186
[24] Kanev, Vassil, Chordal varieties of Veronese varieties and catalecticant matrices, Algebraic Geometry, vol. 9. Algebraic Geometry, vol. 9, J. Math. Sci. (New York), 94, 1114-1125 (1999) · Zbl 0936.14035
[25] Landsberg, Joseph M., Ottaviani, Giorgio, 2010. Equations for secant varieties of Veronese varieties. Preprint,http://arXiv.org/abs/1006.0180; Landsberg, Joseph M., Ottaviani, Giorgio, 2010. Equations for secant varieties of Veronese varieties. Preprint,http://arXiv.org/abs/1006.0180 · Zbl 1274.14058
[26] Landsberg, Joseph M.; Teitler, Zach, On the ranks and border ranks of symmetric tensors, Found. Comput. Math., 10, 3, 339-366 (2010) · Zbl 1196.15024
[27] Lim, Lek-Heng; De Silva, Vin, Tensor rank and ill-posedness of the best low-rank approssimation problem, SIAM J. Matrix Anal. Appl., 31, 1084-1127 (2008) · Zbl 1167.14038
[28] McCullagh, Peter, Tensor methods in statistics, (Monographs on Statistics and Applied Probability (1987), Chapman and Hall) · Zbl 0732.62003
[29] Murnaghan, Francis D., The Theory of Group Representations (1938), The Johns Hopkins Press: The Johns Hopkins Press Baltimore · JFM 64.0964.02
[30] Oldenburger, Rufus, Composition and rank of n-way matrices and multilinear forms, Ann. Math., 35, 622-653 (1934) · Zbl 0009.33801
[31] Ottaviani, Giorgio, An invariant regarding warings problem for cubic polynomials, Nagoya Math. J., 193, 95-110 (2009) · Zbl 1205.14064
[32] Piene, Ragni, Cuspidal projections of space curves, Math. Ann., 256, 95-119 (1981) · Zbl 0468.14010
[33] Sidiropoulos, Nicholas D.; Bro, Rasmus; Giannakis, Georgios B., Parallel factor analysis in sensor array processing, IEEE Trans. Signal Process., 48, 2377-2388 (2000)
[34] Sylvester, James J., Sur une extension d’un théorème de Clebsh relatif aux courbes du quatrième degré, Comptes Rendus, Math. Acad. Sci. Paris, 102, 1532-1534 (1886) · JFM 18.0695.06
[35] Waring, Edward, Meditationes Algebricae, 1770, Cambridge: J. Archdeacon. (1991), Translated from the Latin by D. Weeks, American Mathematical Sociey, Providence, RI, 1991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.