×

Set-theoretic defining equations of the tangential variety of the Segre variety. (English) Zbl 1226.14060

The Segre variety \(X = \mathrm{Seg}({\mathbb P}V^*_1 \times \dots \times {\mathbb P}V^*_n)\) is the image of the Segre embedding of a product of projective spaces of dimension \(r_i\) into \({\mathbb P}^N\), \(N=\prod_i^n (r_i+1) -1\); \(X\) parameterizes decomposable \((r_1+1)\times \dots \times (r_n+1)\)-tensors, i.e. rank 1 tensors.
In this paper the tangential variety \(\tau (X)\) is studied (the union of all projective tangent lines to \(X\)). A conjecture by Landsberg and Weyman describes how the ideal of \(\tau (X)\) should be generated, and the main result here is to prove a set theoretic version of such conjecture.
Namely, it is shown that \(\tau (X)\) is set theoretically the intersection of hypersurfaces of degrees 2,3 and 4, where the quadric equations are linear combinations of \(2\times 2\) minors of a \((r_1+1)\times \dots\times (r_n+1)\)-tensor of indeterminates \(T\), the cubic ones are linear combination of \(3\times 3\) minors of a flattening of \(T\) and the quartic ones comes from hyperdeterminants of format \(2\times 2 \times 2\) in \(T\). More precisely, the equations come from the linear span of the \((SL(2)^{\times n})\times \mathfrak S_n\)-orbits respectively of a quadratic form \(F_0\), a cubic \(F_2\) and a Cayley \(2\times 2 \times 2\)-hyperdeterminant, where \(F_0\) is a linear combination of \(2\times 2\) minors and \(F_2\) is a linear combination of \(3\times 3\) minors of a flattening.
One of the main ingredients for the proof is the study of the variety of principal minors of \(n\times n\) symmetric matrices which contains \(\tau (X)\) and is defined by the quartic equations above.

MSC:

14L30 Group actions on varieties or schemes (quotients)
14M12 Determinantal varieties
13A50 Actions of groups on commutative rings; invariant theory
20G05 Representation theory for linear algebraic groups
15A72 Vector and tensor algebra, theory of invariants

Software:

Macaulay2

References:

[1] Borodin, A.; Rains, E., Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys., 121, 291-317 (2005) · Zbl 1127.82017
[2] M.V. Catalisano, A. Geramita, A. Gimigliano, Secant Varieties of \(( \mathbb{P}^1 ) \times \cdots \times ( \mathbb{P}^1 )n \geq 5\); M.V. Catalisano, A. Geramita, A. Gimigliano, Secant Varieties of \(( \mathbb{P}^1 ) \times \cdots \times ( \mathbb{P}^1 )n \geq 5\) · Zbl 1217.14039
[3] Drton, M.; Sturmfels, B.; Sullivant, S., Lectures on algebraic statistics, (Oberwolfach Seminars 39 (2009), Birkhäuser: Birkhäuser Basel), viii, 271 p · Zbl 1166.13001
[4] Drton, M.; Sturmfels, B.; Sullivant, S., Algebraic factor analysis: tetrads, pentads and beyond, Probab. Theory Related Fields, 138, 463-493 (2007) · Zbl 1111.13020
[5] Fulton, W.; Harris, J., (Representation Theory: A First Course. Representation Theory: A First Course, Graduate Texts in Mathematics, vol. 129 (1991), Springer-Verlag: Springer-Verlag New York) · Zbl 0744.22001
[6] Garcia, L.; Stillman, M.; Sturmfels, B., Algebraic geometry of Bayesian networks, J. Symbolic Comput., 39, 331-355 (2005) · Zbl 1126.68102
[7] B. Georgi, Context-specific independence mixture models for cluster analysis of biological data, Ph.D. thesis, Universität Berlin, 2009.; B. Georgi, Context-specific independence mixture models for cluster analysis of biological data, Ph.D. thesis, Universität Berlin, 2009.
[8] Georgi, B.; Schliep, A., Context-specific independence mixture modeling for positional weight matrices, Bioinformatics, 22 (2006), e166-173
[9] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at: http://www.math.uiuc.edu/Macaulay2/; D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at: http://www.math.uiuc.edu/Macaulay2/
[10] Griffin, K.; Tsatsomeros, M., Principal minors. II. The principal minor assignment problem, Linear Algebra Appl., 419, 125-171 (2006) · Zbl 1110.65035
[11] Holtz, O.; Sturmfels, B., Hyperdeterminantal relations among symmetric principal minors, J. Algebra, 316, 634-648 (2007) · Zbl 1130.15005
[12] J.M. Landsberg, The Geometry of Tensors with Applications, 2010 (in preparation).; J.M. Landsberg, The Geometry of Tensors with Applications, 2010 (in preparation).
[13] Landsberg, J. M.; Manivel, L., On the ideals of secant varieties of Segre varieties, Found. Comput. Math., 4, 397-422 (2004) · Zbl 1068.14068
[14] Landsberg, J. M.; Manivel, L., Construction and classification of complex simple Lie algebras via projective geometry, Selecta Math. (N.S.), 8, 137-159 (2002) · Zbl 1073.14551
[15] J.M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, 2009.; J.M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, 2009. · Zbl 1196.15024
[16] Landsberg, J. M.; Weyman, J., On tangential varieties of rational homogeneous varieties, J. Lond. Math. Soc. (2), 76, 513-530 (2007) · Zbl 1127.14045
[17] Lin, S.; Sturmfels, B., Polynomial relations among principal minors of a \(4 \times 4\)-matrix, J. Algebra, 322, 4121-4131 (2009) · Zbl 1198.14049
[18] L. Oeding, G-varieties and the principal minors of symmetric matrices, Ph.D. thesis, Texas A&M University, 2009.; L. Oeding, G-varieties and the principal minors of symmetric matrices, Ph.D. thesis, Texas A&M University, 2009.
[19] L. Oeding, Set-theoretic defining equations of the variety of principal minors of symmetric matrices, 2009. Preprint: arXiv:0809.4236; L. Oeding, Set-theoretic defining equations of the variety of principal minors of symmetric matrices, 2009. Preprint: arXiv:0809.4236 · Zbl 1238.14035
[20] Pachter, L.; Sturmfels, B., Algebraic Statistics for Computational Biology (2005), Cambridge University Press: Cambridge University Press New York · Zbl 1108.62118
[21] Vandebril, R.; Golub, G.; Van Barel, M., A quasi-separable approach to solve the symmetric definite tridiagonal generalized eigenvalue problem, SIAM J. Matrix Anal. Appl., 31, 154-174 (2009) · Zbl 1186.65046
[22] Vandebril, R.; Van Barel, M.; Mastronardi, N., Linear systems, (Matrix Computations and Semiseparable Matrices. Vol. 1 (2008), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD) · Zbl 1141.65019
[23] Weyman, J., (Cohomology of Vector Bundles and Syzygies. Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, vol. 149 (2003), Cambridge University Press) · Zbl 1075.13007
[24] Zak, F. L., (Tangents and Secants of Algebraic Varieties. Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, vol. 127 (1993), American Mathematical Society: American Mathematical Society Providence), Translated from the Russian manuscript by the author · Zbl 0795.14018
[25] Zamarashkin, N. L.; Oseledets, I. V.; Tyrtyshnikov, E. E., The tensor structure of the inverse of a Toeplitz band matrix, Dokl. Akad. Nauk, 428, 161-162 (2009) · Zbl 1181.15037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.