×

Linear groups over general rings. I: Generalities. (English. Russian original) Zbl 1278.20066

J. Math. Sci., New York 188, No. 5, 490-550 (2013); translation from Zap. Nauchn. Semin. POMI 394, 33-139 (2011).
This paper is the first part of a systematic survey on the structure of classical groups over general rings. It covers background material such as one-sided inverses, elementary transformations, definitions of obvious subgroups, Bruhat and Gauss decompositions, relative subgroups, finitary phenomena, and transvections.

MSC:

20G35 Linear algebraic groups over adèles and other rings and schemes
20H25 Other matrix groups over rings
20-02 Research exposition (monographs, survey articles) pertaining to group theory
20F05 Generators, relations, and presentations of groups
Full Text: DOI

References:

[1] E. Abe, ”Automorphisms of Chevalley groups over commutative rings,” Algebra Analiz, 5, No. 2, 74–90 (1993). · Zbl 0842.20039
[2] E. Artin, Geometrieal Algebra [Russian translation], Nauka, Moscow (1969).
[3] A. S. Atkarskaya, ”Automorphisms of the group GL n (R), n 4, over an associative graded ring,” team paper, Moscow State University (2009).
[4] V. G. Bardakov, ”On factorization of automorphisms of free modules into prime factors,” Izv. RAN, Ser. Mat., 59, No. 2, 109–128 (1995). · Zbl 0896.20031
[5] H. Bass, Algebraic K-theory [Russian translation]. Mir, Moscow (1973). · Zbl 0299.18005
[6] H. Bass, J. Milnor, and J.-P. Serre, ”Solution of the congruence problem for SL n (n 3) and Sp2n (n 2),” Matematika, 14, No. 6, 64–128 (1970); 15, No. 1, 44–60 (1971).
[7] V. M. Bondarko, ”On the similarity of matrices over residue rings,” in: Collection of Mathematical Works, Naukova Dumka, Kiev (1976). pp. 275–277.
[8] 8, Z. I. Borewicz and N. A. Vavilov, ”Arrangement of subgroups that contain the group of block diagonal matrices in the general linear group over a ring,” Matematika, Izv. VUZ’ov, No. 11, 12–16 (1982).
[9] Z. I. Borewicz and N. A. Vavilov, ”On the definition of a net subgroup,” Zap. Nauchn. Semin. LOMI, 132, 26–33 (1983). · Zbl 0537.20022
[10] Z. I. Borewicz and N. A, Vavilov, ”Arrangernent of subgroups in the general linear group over a commutative ring,” Trudy Mat. Inst. AN SSSR, 165, 24–42 (1984).
[11] O. V. Bryukhanov, ”Genetics of universal Chevalley groups over some commutative rings,” Mat. Zametki, 57, No. 6, 814–826 (1995). · Zbl 0856.20032
[12] N. Bourbaki, Lie Groups and Algebras [Russian translation], Chaps. IV–VI, Mir, Moscow (1972). · Zbl 0249.22001
[13] N. A. Vavilov, ”Structure of split classical groups over a commutative ring,” Dakl. Acad. Nauk SSSR, 299, No. 6, 1300–1303 (1988). · Zbl 0688.20027
[14] N. A. Vavilov, ”Computations in exceptional groups,”’ Vestn. Samar. Univ., No. 7, 11–24 (2007).
[15] N. A. Vavilov, Not Quite Naive Linear Algebra. II. Matrix Algebra [in Russian], St. Petersburg (2007).
[16] N. A. Vavilov, ”Structure of isotropic reductive groups,” Trudy Inst. Matem. NAN Belarusi, 18, No. 1, 1–13 (2010). · Zbl 1459.20038
[17] N. A. Vavilov and M. P. Gavrilovich, ”An A2-proof of structure theorems for Chevalley groups of types E6 and E7,” Algebra Analiz, 16, No. 4, 54–87 (2004).
[18] N. A. Vavilov, M. P. Gavrilovich, and S. I. Nikolenko, ”Structure of Chevalley groups: the proof from the Book,” Zap. Nauchn. Semin. POMI, 330, 36–76 (2006). · Zbl 1162.20032
[19] N. A. Vavilov and V. G. Kazakevich, ”One more variation on the theme of decomposition of transvections,” Vestn. SPIJGU, Ser. 1, No. 3, 71–74 (2008). · Zbl 1175.20043
[20] N. A. Vavilov and V. G. Kazakevich, ”Decomposition of transvections for automorphisms,” Zap. Nauchn. Semin. POMI, 365, 47–62 (2009). · Zbl 1211.20043
[21] N. A. Vavilov and V. G. Kazakevich, ”Some further variations on the decomposition of transvections,” Zap. Nauchn. Semin. POMI, 375, 32–47 (2010). · Zbl 1215.20048
[22] N. A. Vavilov and A. Yu. Luzgarev, ”An A2-proof of structure theorems for Chevalley groups of type E8,” Algebra Analiz (2011).
[23] N. A. Vavilov and S. I. Nikolenko, ”An A2–proof of structure theorems for Chevalley groups of type F4,” Algebra Analiz, 20, No. 4, 27–63 (2008).
[24] N. A. Vavilov and V. A. Petrov, ”On overgroups of Ep(2l, R),” Algebra Analiz, 15, No. 3, 72–114 (2003).
[25] N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, ”Computations in Chevalley groups over commutative rings,” Dolvl. AN SSSR, 40, No. 1, 145–147 (1990). · Zbl 0795.20028
[26] N. A. Vavilov and S. S. Sinchuk, ”Decompositions of Dennis–Vaserstein type,” Zap. Nauchn. Semin. POMI, 375, 48–60 (2010). · Zbl 1215.20049
[27] N. A. Vavilov and S. S. Sinchuk, ”Parabolic factorizations of split classical groups,” Algebra Analiz, 23, No. 4, 1–30 (2011). · Zbl 1283.20057
[28] N. A. Vavilov and A. K. Stavrova, ”The main reductions in the problem of description of normal subgroups,” Zap. Nauchn. Semin. POMI, 349, 30–52 (2007).
[29] N. A. Vavilov and A. V. Stepanov, ”On subgroups of the general linear group over a ring that satisfies stability conditions,” Izv. VUZ’ov, No. 10, 19–25 (1989). · Zbl 0692.20034
[30] N. A. Vavilov and A. V. Stepanov, ”The standard commutation formula,” Vestn. SPbGU, Ser. 1, 1, 9–14 (2008). · Zbl 1147.20042
[31] N, A. Vavilov and A. V. Stepanov, ”Overgroups of semisirnple groups,” Vestn. Sarnarsk. Univ., No. 3, 51–95 (2008). · Zbl 1322.20040
[32] N. A. Vavilov and A. V. Stepanov, ”On the standard commutation formula once again,” Vestn, SPbGU, Ser. 1, No. 1, 16–22 (2010).
[33] L. N. Vaserstein, ”K1-theory and the congruence problem,” Mat. Zametki, 5, No. 2, 233–244 (1969). · Zbl 0279.20037
[34] L. N. Vaserstein, ”On stability of the general linear group over a ring,” Mat. Sb., 79, No. 3, 405–424 (1969).
[35] L. N. Vaserstein, ”Stability of unitary and orthogonal groups over rings with involution,” Mat. Sb., 81, No. 3, 328–351 (1970).
[36] L. N. Vaserstein, ”Stable rank of rings and the dimension of topological spaces,” Fankts. Analiz, 5, No. 2, 102–110 (1971). · Zbl 0239.16028 · doi:10.1007/BF01076414
[37] L. N. Vaserstein, ”On the group SL2 over Dedekind rings of arithmetic type,” Mat. Sb., 89, No. 2, 313–322 (1972).
[38] L. N. Vaserstein, ”Stability of classical groups over rings,” Mat. Sb., 93, No. 2, 268–295 (1974).
[39] L. N. Vaserstein and A. V. Nlikhalev. ”On normal subgroups of orthogonal group over rings with involution,” Algebra Logika, 9, No. 6, 629–632 (1970).
[40] L. N. Vaserstein and A. A. Suslin, ”The Serre problem on projective modules over polynomial rings and algebraic K-theory,” Izv. AN SSSR, Sep. Matem., 40, No. 5, 993–1054 (1976). · Zbl 0338.13015
[41] Y. N. Gerasimov, ”The group of units of the free product of rings,” Mat. Sb., 134, No. 1, 42–65 (1987). · Zbl 0634.16003
[42] I. Z. Golubchik, ”On the general linear group over an associative ring,” Usp. Mat. Nauk, 28, No. 3, 179–180 (1973).
[43] L. Z. Golubchik, ”On normal subgroups of the orthogonal group over an associative ring with involution,” Usp. Mat. Nauk, 30, No. 6, 165 (1975).
[44] I. Z. Golubchik, ”Normal subgroups of linear and unitary groups over rings,” Ph. D. thesis, MGE (1981). · Zbl 0467.16026
[45] 1. Z, Golubchik, ”On normal subgroups of linear and unitary groups over an associative ring,” in: Spaces Over Algebras and Some Questions of Net Theory, Ufa (1985), pp. 122–142.
[46] I. Z. Golubchik, ”Isomorphisms of projective groups over associative rings,” Fund. Prikl. Mat., 1, No. 1, 311–314 (1995). · Zbl 0867.20038
[47] I. Z. Golubchilc, ”On the general linear group over weakly Noetherian associative rings,” Fund. Prikl. Mat., 1, No. 3, 661–668 (1995). · Zbl 0867.20037
[48] I. Z. Golubchik, ”Groups of Lie type over PI-rings,” Fund. Prikl. Mat., 3, No. 2, 399–424 (1997). · Zbl 0903.20026
[49] I. Z. Golubchik, ”Linear groups over associative rings,” Doctoral Thesis, Ufa (1997). · Zbl 0903.20026
[50] I. Z. Golubchik, ”An isomorphism of the group GL2(R) over an associative ring R,” in: Collection of Scientific Works, lzd. Baslikir. GPU, Ufa (2003), pp. 21–34.
[51] I. Z. Golubchik and A. V. Mikhalev, ”Epimorphisms of projective groups over associative rings,” in: Algebra, MGU (1982), pp. 34–45. · Zbl 0529.20033
[52] I. Z. Golubchik and A. Y. Nlikhalev, ”Generalized group identities in classical groups,” Zap. Nauchn. Semin. LOMI, 114, 96–119 (1982). · Zbl 0498.20030
[53] I. Z. Golubchik and A. V. Mikhalev, ”lsomorphisms of the general linear group over an associative ring,” Vestn. Mosk. Univ., Ser. 1, No. 3, 61–72 (1983). · Zbl 0534.20033
[54] I. Z. Golubchik and A. V. Mikhalev, ”lsomorphisms of unitary groups over associative rings,” Zap. Nauchn. Semin. LOMI, 132, 97–109 (1983).
[55] I. Z. Golubchik and A. V. Nlikhalev, ”On the group of elementary matrices over Pl–rings,” in: Investigations in Algebra, Tbilisi (1985), pp. 20–24.
[56] D. Yu. Grigoriev, ”On the relationship between the rank and the multiplicative complexity of a bilinear form over a commutative Noetherian ring,” Zap. Nauchn. Semin. LOMI, 86, 66–81 (1979).
[57] J. Dieuclonné, Geometry of Classical Groups [Russian translation], Mir, Moscow (1974).
[58] K. Kh. Zakiryanov, ”A criterion of the occurrence in the subgroup generated by two–dimensional elementary matrices,” Algebra Logika, 22, No. 5, 489–503 (1983).
[59] K. Kh. Zalciryanov, ”Finiteness of the width of symplectic groups over rings of algebraic numbers relative to elementary matrices,” Algebra Logika, 24, No. 6, 667–673 (1985).
[60] K. Kh. Zakiryanov, ”On a property for polynomial rings over a discrete valuation ring,” Izv. VUZ’ov, No. 2, 74–90 (1992).
[61] A. E. Zalessky, ”Linear groups,” in: Progress in Science, Fundamental Directions, VINITI (1989), pp. 114–228.
[62] E. I. Zelmanov, ”Isomorphisms of general linear groups over associative rings,” Sib. Mat. Zhurn., 26, No. 4, 49–67 (1985).
[63] A. S. Ismagilova, ”A homomorphism of the group GL2(R),” Fund. Prikl. Mat., 11, No. 3, 95–108 (2005).
[64] A. S. Ismagilova, ”Isomorphisms of unitary groups over rings,” Fund. Prikl. Mat., 12, No. 2, 55–70 (2006).
[65] I. S. Klein and A. V. Mikhalev, ”The orthogonal Steinberg group over a ring with involution,” Algebra Logika, 9, No. 2, 145–166 (1970).
[66] I. S. Klein and A. V. Mikhalev, ”The unitary Steinberg group over a ring with involution,” Algebra Logika, 9, No. 5, 510–519 (1970).
[67] P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).
[68] V. I. Kopeiko. ”Stability of symplectic groups over a polynomial ring,” Mat. Sb., 106, No. 1, 94–107 (1978).
[69] V. I. Kopeiko, ”On a Suslin’s theorem,” Zap. Nauchn. Semin. LOMI, 132, 119–121 (1983). · Zbl 0551.20030
[70] V. I. Kopeiko, ”On the structure of the symplectic group of polynomial rings over regular rings of dimension 1,” Usp. Mat. Nauk, 47, No. 4, 193–194 (1992).
[71] V. I. Kopeiko, ”On the structure of the symplectic group of plynomial rings over a regular ring,” Fund. Prikl. Mat., 1, No. 2, 545–548 (1995).
[72] V. I. Kopeiko, ”On the structure of the special linear group over Laurent polynomial rings,” Fund. Prikl. Mat., 1, No. 4, 1111–1114 (1995). · Zbl 0867.20036
[73] V. I. Kopeiko, ”Symplectic: groups over Laurent polynomial rings and patching diagrams.” Fund. Prikl. Mat., 5, No. 3, 943–945 (1999). · Zbl 0963.20027
[74] A. Yu. Luzgarev and A. K. Stavrova, ”Perfectness of the elementary subgroup of an isotropic reductive group,” Algebra Analiz, 23, No. 5, 140–154 (2011).
[75] J. Milnor, Introduction to Algebraic K-Theory [Russian translation], Mir, Moscow (1974). · Zbl 0294.18010
[76] S. V. Nagornyi, ”Complex representations of the general linear group of degree 3 modulo a power of a prime number,” Zap. Nauchn. Semin LOMI, 75, 143–150 (1978).
[77] Yu. P. Nesterenko and A. A. Suslin, ”Homology of the general linear group over a local ring and Milnor’s K-theory,” Izu. AN SSSR, Ser. Mat., 53, No. 1, 121–146 (1989). · Zbl 0668.18011
[78] G. A. Noskov, ”Generators and defining relations of symplectic groups over some rings,” Mat. Zametki. 26, No. 3, 237–246 (1974).
[79] O. T. O’Meara, ”Lectures in linear groups,” in: Automorphisms of Classical Groups, Mir, Moscow (1976), pp. 57–166.
[80] O. T. O’Meara, Lectures in Symplectic Groups [Russian translation], Mir, Moscow (1979).
[81] O. T. O’Meara. ”The general theory of isomorphisms of linear groups.” in: Isomorphisms of Classical Groups Ovr Integral Rings, Mir, Moscow (1980), pp. 58–119.
[82] I. A. Panin, ”On stability for orthogonal and symplectic algebraic K-theories,” Algebra Analiz, 1, No. 1, 172–195 (1989).
[83] A. A. Pashchevskii, ”Automorphism groups of net subgroups of linear groups,” Ph. D. Thesis, Leningrad State Univ. (1984).
[84] V. M. Petechuk, ”Automorphisms of SL n and GL n over some local rings,” Mat. Zametki, 28, No. 2, 187–204 (1980). · Zbl 0437.20037
[85] V. M. Petechuk, ”Automorphisms of SL3(R) and GL n (R),” Mat. Zametki, 31, No. 5, 657–668 (1982). · Zbl 0492.20030
[86] V. M. Petechuk, ”Automorphisms of matrix groups over commutative rings,” Mat. Sb., 45, 527–542 (1983). · Zbl 0511.20029 · doi:10.1070/SM1983v045n04ABEH001024
[87] V. M. Petechuk, ”Homomorphisrns of linear groups over commutative rings,” Mat. Zametki, 46, No. 5, 50–61 (1989). · Zbl 0688.20026
[88] V. M. Petechuk, ”Stability structure of linear groups over rings,” Dopovidi NAN Ukrainy, No. 11, 17–22 (2001). · Zbl 0988.20036
[89] V. M. Petechuk, ”Stability of rings,” Nauk. Visnik Uzhgorod. Un-tu, 19, 87–111 (2009). · Zbl 1199.20085
[90] V. A. Petrov, ”Odd unitary groups,” Zap. Nauchn. Semin. POMI, 305, 195–225 (2003).
[91] V. A. Petrov, ”Overgroups of classical groups,” Ph. D. Thesis, SPb. State Univ. (2005).
[92] V. A. Petrov and A. K. Stavrova, ”Elementary subgroups of isotropic reductive groups,” Algebra Analiz, 20, No. 4, 160–188 (2008). · Zbl 1206.20053
[93] J.-P. Serre, ”The congruence subgroup problem for SL2,” Matematika, 15, No. 6, 12–45 (1971).
[94] R. Steinberg, Lectures in Chevalley Groups [Russian translation], Mir. Moscow (1975). · Zbl 0307.22001
[95] A. V. Stepanov, ”The ideal stable rank of rings,” Vestn. LGU, No. 3, 46–51 (1986). · Zbl 0617.20027
[96] A. V. Stepanov, ”Stable rank and stability of arbitrary rows,” Usp. Mat. Nauk, 48, No. 2, 243–244 (1987).
[97] A. V. Stepanov, ”Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis LGU (1987).
[98] A. V. Stepanov, ”A ring of finite stable rank is not necessarily Dedekind finite,” Dokl. AN SSSR, 36, No. 2, 301–304 (1988). · Zbl 0651.20048
[99] A. V. Stepanov, ”Description of subgroups of the general linear group over a. ring with the help of stability conditions,” in: Rings and Linear Groups, Krasnodar (1988), pp. 82–91.
[100] A. V. Stepanov, ”On normal structure of the general linear group over a ring,” Zap. Nauchn. Semin. POMI, 236, 166–182 (1997).
[101] A. A. Suslin, ”On a Cohn’s theorem,” Zap. Nauchn. Semin. LOMI, 64, 127–130 (1976).
[102] A. A. Suslin, ”On stably free rnodules,” Mat. Sb., 102, No. 4, 479–492 (1977). · Zbl 0389.13002 · doi:10.1070/SM1977v031n04ABEH003717
[103] A. A. Suslin, ”On the structure of the special linear group over a polynomial ring,” Izv. AN SSSR, Ser. Mat., 41, No. 2, 235–253 (1977). · Zbl 0354.13009
[104] A. A. Suslin, ”Reciprocity laws and the stable rank of a polynomial ring,” Izv. AN SSSR, Ser. Mat., 43, No. 6, 1394–1425 (1979). · Zbl 0428.13007
[105] A. A. Suslin, ”Hornology of GL n , characteristic classes, and the Milnor K-theory,” Trudy Mat. Inst. AN SSSR, 165, 188–204 (1984).
[106] A. A. Suslin and Kopeiko, ”Quadratic modules and orthogonal groups over polynomial rings,” Zap. Nauchn. Semin. LOMI, 71, 216–250 (1977). · Zbl 0416.20045
[107] A. A. Suslin and M. S. Tulenbaev, ”Stability theorem for the Milnor K2-functor,” Zap. Nauchn. Semin. LOMI 64, 131–152 (1976). · Zbl 0356.18014
[108] O. I. Tavgen’, ”Finite width of arithmetic Chevalley groups of rank 2,” Dokl. AN SSSR, 310, No. 4, 802–806 (1990). · Zbl 0716.20026
[109] O. I. Tavgen’, ”Bounded generation of Chevalley groups over rings of algebraic numbers,” Izv. AN SSSR, Ser. Matem., 54, No. 1, 97–122 (1990). · Zbl 0697.20032
[110] S. Tazhetdinov, ”Subnormal structure of two-dimensional linear groups over rings close to fields,” Algebra Logika, 24, No. 4, 414–425 (1985). · Zbl 0587.20028
[111] S. Tazhetdinov, ”Subnormal structure of symplectic groups over local rungs,” Mat. Zametki, 36, No. 2, 289–298 (1985). · Zbl 0575.20045
[112] S. Tazhetdinov, ”Normal structure of symplectic groups over rings of stable rank 1,” Mat. Zametki, 39, No. 4, 512–517 (1986). · Zbl 0605.20043
[113] S. Tazhetdinov, ”Subnormal structure of two-dimensional linear groups over 6-primitiye rings,” Mat. Zametki, 52, No. 4, 99–105 (1992). · Zbl 0831.20063
[114] S. Tazhetdinov, ”Subnorrnal structure of symplectic groups over (2,3)-full rings,” Sib. Mat. Zhurn., 34, No. 6, 165–169 (1993). · Zbl 0831.20068
[115] S. Tazhetdinov, ”Subnormal structure of two-dimensional linear groups over full rings,” Mat. Zametki, 71, No. 6, 924–930 (2002). · Zbl 1025.20036 · doi:10.4213/mzm396
[116] S. Tazhetdinov, ”Structure of subnormal subgroups of symplectic groups over local rings,” Sib. Mat. Zhurn., 47, No. 3, 665–669 (2006). · Zbl 1115.20037
[117] S. Tazhetdinov, ”On subnormal subgroups of linear groups,” Sib. Mat. Zhurn., 49, No. 1, 218–223 (2008). · Zbl 1154.20042 · doi:10.1007/s11202-008-0022-z
[118] M. S. Tulenbaev, ”The Schur multiplier of the group of elementary matrices of finite order,” Zap. Nauchn. Semin. LOMI, 86, 162–169 (1979). · Zbl 0419.20038
[119] M. S. Tulenbaev, ”The Steinberg group over a polynomial ring,” Mat. Sb., 45, No. 1, 139–154 (1983). · Zbl 0509.18016 · doi:10.1070/SM1983v045n01ABEH002591
[120] C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], I, Mir, Moscow (1977). · Zbl 0345.16005
[121] J. E. Humphreys, Arithmetic Groups [Russian translation], Mir, Moscow (1983). · Zbl 0581.20021
[122] S. G. Khlebutin, ”Sufficient conditions for normality of the group of elementary matrices,” Usp. Mat. Nauk, 39, No. 3, 245–246 (1984). · Zbl 0547.20047
[123] S. G. Khlebutin, ”Some properties of the elementary subgroup,” in: Algebra, Logic, and Number Theory, Izd, MGU, Moscow (1986), pp. 86–90.
[124] E. Abe, ”Whitehead groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1308 (1983). · Zbl 0513.20030 · doi:10.1080/00927878308822906
[125] E. Abe, ”Chevalley groups over commutative rings,” in: Proceedings of the Conference on Radical Theory, Sendai (1988), pp. 1–23. · Zbl 0820.20053
[126] E. Abe, ”Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989). · Zbl 0820.20053 · doi:10.1090/conm/083/991973
[127] E. Abe, ”Automorphisms of Chevalley groups over commutative rings,” St. Petersburg Math. J., 5, No. 2, 74–90 (1993). · Zbl 0842.20039
[128] E. Abe, ”Chevalley groups over commutative rings. Normal subgroups and automorphisms,” Contemp. Math., 13–23 (1995). · Zbl 0839.20059
[129] E. Abe and J. Morita, ”Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains,” J. Algebra, 115, 450–465 (1988). · Zbl 0685.20036 · doi:10.1016/0021-8693(88)90272-4
[130] E. Abe and K. Suzuki, ”On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976). · Zbl 0336.20033 · doi:10.2748/tmj/1178240833
[131] H. Abels, ”Finite presentability of S-arithmetic groups. Compact presentability of solvable groups,” Lecture Notes Math., 1261, Springer-Verlag (1987). · Zbl 0621.20015
[132] H. Abels, ”Finiteness properties of certain arithmetic groups in the function field case,” Israel J. Math., 76, 113–128 (1991). · Zbl 0819.20051 · doi:10.1007/BF02782847
[133] P. Abramenko, ”Über einige diskret normierte Furiktionenringe, die keine GE2-Ringe sind,” Archiv Math., 46, 233–239 (1986). · Zbl 0598.12013 · doi:10.1007/BF01194189
[134] P. Abramenko, ”Endlichkeitseigenschaften der Gruppen SL n $ \(\backslash\)left( {{{\(\backslash\)mathbb{F}}_q}\(\backslash\)left[ t \(\backslash\)right]} \(\backslash\)right) $ ,” Thesis Univ. Frankfurt (1987). · Zbl 0661.20014
[135] P. Abramenko, ”Finiteness properties of Chevalley groups over $ {{\(\backslash\)mathbb{F}}_q}\(\backslash\)left[ t \(\backslash\)right] $ ,” Israel J. Math., 87, 203–223 (1994). · Zbl 0809.20034 · doi:10.1007/BF02772995
[136] P. Abramenko, ”Twrin buildings and applications to S-arithmetic groups,” Lecture Notes Math., 1641, Springer-Verlag (1996). · Zbl 0908.20003
[137] P, Abrarrienko, ”Finiteness properties of groups acting on twin buildings,” in: Groups: Topological, Combinatorial, and Arithmetic Aspects, London Math. Soc. Lecture Notes, 331, Cambridge Univ. Press (2004), pp. 21–26.
[138] P. Abramenko, ”On finite and elementary generation of SL2(R),” arXiv:0808.1095v1, 1–20 (2008).
[139] A, N. Acharya, ”A note on a stability theorem of the general linear group,” J. Indian Math. Soc., 39, No. 1–4, 51–68 (1975). · Zbl 0412.20035
[140] S. I. Adian and J. Mennicke, ”Bounded generation of SL n $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Int. J. Algebra Comput., 2, No. 4, 357–365 (1992). · Zbl 0794.20061 · doi:10.1142/S0218196792000220
[141] R. Alperin, ”SL2 $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ {{{{1+\(\backslash\)sqrt{5}}} \(\backslash\)left/ {2} \(\backslash\)right.}} \(\backslash\)right]} \(\backslash\)right) $ ,” Duke Math. J., 47, No. 3, 487–509 (1980). · Zbl 0466.18007 · doi:10.1215/S0012-7094-80-04730-4
[142] R. Alperin, ”Homology of PSL2 $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ \(\backslash\)omega \(\backslash\)right]} \(\backslash\)right) $ ,” Comment. Math. Helv., 55, 364–377 (1980). · Zbl 0451.20044 · doi:10.1007/BF02566693
[143] R. Alperin, ”Normal subgroups of PSL2 $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ {\(\backslash\)sqrt{-3 }} \(\backslash\)right]} \(\backslash\)right) $ ,” Proc. Amer. Math. Soc., 124, No. 10, 2935–2941 (1996). · Zbl 0858.20036 · doi:10.1090/S0002-9939-96-03429-6
[144] R. Alperin and D. Wright, ”K2(2, k[T, T -1]) is generated by ’symbols”’, J. Algebra, 59, No. 1, 39–46 (1979). · Zbl 0414.18008 · doi:10.1016/0021-8693(79)90150-9
[145] J. B. An and X.-P. Tang, ”The structure of symplectic groups over semilocal domains,” Acta Math. Sinica, New Series, 1, No. 1, 1–15 (1985). · Zbl 0581.20046 · doi:10.1007/BF02559998
[146] P. Ara and R. R. Goodearl, ”Stable rank of corner rings,” Proc. Amer. Math. Soc., 133, No. 3, 379–386 (2004). · Zbl 1065.19001 · doi:10.1090/S0002-9939-04-07773-1
[147] F. A. Arlinghaus and L. N. Vaserstein. ”The work of Pere Menal on normal subgroups.” Publicacions Math., 36, 389–400 (1992). · Zbl 0790.20064 · doi:10.5565/PUBLMAT_362A92_03
[148] S. Bachmuth and H. Mochizuki, ”E2 SL2 for most Laurent polynomial rings,” Amer. J. Math., 104, 1181–1189 (1982). · Zbl 0513.20038 · doi:10.2307/2374056
[149] A. Bak, ”The stable structure of quadratic modules,” Thesis, Columbia Univ. (1969). · Zbl 0192.37202
[150] A. Bak, ”Subgroups of the general linear group normalized by relative elementary groups,” Lecture Notes Math., 967, 1–22 (1982). · Zbl 0536.20030 · doi:10.1007/BFb0061897
[151] A. Bak, ”Nonabelian K-theory: The nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991). · Zbl 0741.19001 · doi:10.1007/BF00533991
[152] A. Bak, R. Hazrat, and N. Vavilov, ”Localization-completion strikes again: relative K1 is nilpotent by Abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009). · Zbl 1167.19002 · doi:10.1016/j.jpaa.2008.11.014
[153] A. Bak, R. Hazrat, and N. Vavilov, ”Structure of hyperbolic unitary groups. II. Normal subgroups,” Algebra Colloq. (2011).
[154] A. Bak, V. Petrov, and Guoping Tang, ”Stability for quadratic K1,” K-Theory, 30, No. 1, 1–11 (2003). · Zbl 1048.19001 · doi:10.1023/B:KTHE.0000015340.00470.a9
[155] A. Bak and U. Rehmann, ”The congruence subgroup and metaplectic problem for SL n of division algebras,” J. Algebra, 78, 475–547 (1982). · Zbl 0495.20022 · doi:10.1016/0021-8693(82)90094-1
[156] A. Bak and A. Stepanov, ”Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001). · Zbl 1072.19001
[157] A. Bak and Guoping Tang, ”Stability for hermitian K1,” J. Pure Appl. Algebra, 150, No. 2, 109–121 (2000). · Zbl 0961.19002
[158] A. Bak and N. Vavilov, ”Normality for elementary subgroup functors,” Math. Proc. Cambridge Phil. Soc., 118, No. 1, 1–18 (1995). · Zbl 0837.11044 · doi:10.1017/S0305004100073400
[159] A. Bak amd N. Vavilov, ”Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000). · Zbl 0963.20024 · doi:10.1007/s10011-000-0159-1
[160] C. Bartolone and F. Bartolozzi, ”Topics in geometric algebra over rings,” Rings Geometry, 353–389 (1985). · Zbl 0612.51007
[161] C. Bartolone and A. G. Spera, ”Tits’s theorem for the group PGL2(L), L is not necessarily a commutative local ring,” Ann. Mat. Pura Appl., 149, 297–309 (1987). · Zbl 0638.20027 · doi:10.1007/BF01773939
[162] H. Bass, ”The stable structure of quite general linear groups,” Bull. Amer. Math. Soc., 70, No. 3, 430–434 (1964). · Zbl 0232.20092
[163] H. Bass, ”K-theory and stable algebra,” Inst. Hautes Études Sel. Publ. Math., No. 22, 5–60 (1964). · Zbl 0248.18025
[164] H. Bass, Lectures on Topics in Algebraic K-Theory, Tata Inst. of Fundam. Research. Bombay (1967). · Zbl 0226.13006
[165] H. Bass, ”Some problems in classical algebraic K-theory,” Lecture Notes Math., 342, 3–73 (1973). · Zbl 0384.18008
[166] H. Bass, ”Unitary algebraic K-theory,” Lecture Notes Math., 343, 57–265 (1973). · Zbl 0299.18005 · doi:10.1007/BFb0061370
[167] H. Bass, ”Introduction to some methods of algebraic K-theory,” Conf. Board Math. Sci., 20 (1974). · Zbl 0323.18007
[168] H. Bass and J. Tate, ”The Milnor ring of a global field,” Lecture Notes Math., 342, 349–446 (1973). · Zbl 0299.12013
[169] R. Basu, R. Khanna, and R. A. Rao, ”On Quillen’s local global principle.” Contemp. Math., 390, 17–30 (2005). · Zbl 1191.13013 · doi:10.1090/conm/390/07291
[170] R. Basu and R. A. Rao, ”Injective stability for K1 of classical modules,” J. Algebra, 323, 867–877 (2010). · Zbl 1185.19001 · doi:10.1016/j.jalgebra.2009.12.012
[171] E. Bayer-Fluckiger and L. Fainsilber, ”Nonunimodular Hermitian forms,” Invent. Math., 123, 233–240 (1996). · Zbl 0847.11016
[172] H. Behr, ”Endliche Erzeugbarkeit arithmetischer Gruppen über Funktionenkörpern.” Invent. Math., 7, 1–32 (1969). · Zbl 0169.34802 · doi:10.1007/BF01418772
[173] H. Behr, ”Eine endliche Präisentation der symplektischen Gruppe Sp4 $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Math. Z., 141, 47–56 (1975). · doi:10.1007/BF01236983
[174] H. Behr, ”Explizite Präsentation von Chevalleygruppen über $ \(\backslash\)mathbb{Z} $ ,” Math. Z., 141, 235–241 (1975). · doi:10.1007/BF01247309
[175] H. Behr, ”SL3 $ \(\backslash\)left( {{{\(\backslash\)mathbb{F}}_q}\(\backslash\)left[ t \(\backslash\)right]} \(\backslash\)right) $ is not finitely presentable,” London Math. Soc. Lecture Notes, 36, 213–224 (1977).
[176] H. Behr. ”Finite presentability of arithmetic groups over global function Helds,” Proc. Edinburgh Math. Soc., 30, 23–39 (1987). · Zbl 0618.20033 · doi:10.1017/S0013091500017934
[177] H. Behr, ”Arithmetic groups over function fields. I. A complete characterisation of finitely generated and finitely presented arithmetic subgroups of reductive groups,” J. relne angew. Math., 495, 79–118 (1998). · Zbl 0923.20038
[178] H. Behr, ”Higher finiteness properties of S-arithmetic groups in the function field case. I,” London Math. Soc. Lecture Notes, 331, 27–42 (2004). · Zbl 1099.20022
[179] P. Bender, ”Eine Präsentation der symplektischen Gruppe Sp(4, $ \(\backslash\)mathbb{Z} $ ) mit 2 Erzeugenden und 8 definierenden Relationen,” J. Algebra, 65, No. 2, 328–331 (1980). · Zbl 0437.20028 · doi:10.1016/0021-8693(80)90221-5
[180] G. M. Bergman, ”Coproducts and some universal ring constructions,” Trans. Amer. Math. Soc., 200, 33–88 (1977). · Zbl 0264.16018 · doi:10.1090/S0002-9947-1974-0357503-7
[181] A. J. Berrick and M. E. Keating, ”Rectangular invertible matrices,” Amer. Math. Monthly, 104, No. 4, 297–302 (1997). · Zbl 0880.15004 · doi:10.2307/2974577
[182] M. Bestvina and N. Brady, ”Morse theory and finiteness properties of groups,” Invent. Math., 129, 445–470 (1997). · Zbl 0888.20021 · doi:10.1007/s002220050168
[183] S. Betley, ”Homological stability for O n,n over a local ring,” Trans. Amer. Math. Soc., 303, No. 1. 413–429 (1987). · Zbl 0632.20026
[184] S. Betley, ”Vanishing theorems for homology of GL n R,” J. Pure Appl. Algebra, 58, 213–226 (1989). · Zbl 0686.20036 · doi:10.1016/0022-4049(89)90037-6
[185] S. Betley, ”Homological stability for O n,n over semi-local rings,” Glasgow Math. J., 32, No. 2, 255–259 (1990). · Zbl 0722.20031 · doi:10.1017/S0017089500009307
[186] M. Bhargava, ”Higher composition laws. l. A new view of Gauß composition and quadratic generalizations,” Ann. Math., 159, 217–250 (2004). · Zbl 1072.11078 · doi:10.4007/annals.2004.159.217
[187] M. Bhargava, ”Higher composition laws. ll. On cubic analogues of Gauß composition,” Ann. Math., 159, 865–886 (2004). · Zbl 1169.11044 · doi:10.4007/annals.2004.159.865
[188] M. Bhargava, ”Higher composition laws. III. The parametrization of quartic rings,” Ann. Math., 159, 1329–1360 (2004). · Zbl 1169.11045 · doi:10.4007/annals.2004.159.1329
[189] M. Bhargava, ”Higher composition laws. IV. The parametrization of quintic rings,” Ann. Math., 167, 53–94 (2008). · Zbl 1173.11058 · doi:10.4007/annals.2008.167.53
[190] M. L. Bolla, ”lsomorphism of general linear groups over rings,” J. Algebra, 96, 592–602 (1985). · Zbl 0577.20034 · doi:10.1016/0021-8693(85)90029-8
[191] A, Borel, ”On the automorphisms of certain subgroups of semisimple Lie groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp, 43–73.
[192] A. Borel and J. Tits, ”On abstract homomorphisms of simple algebraic groups,” in: Proceedings of the Bombay Colloquium on Algebraic Geometry (1968), pp. 75–82.
[193] A. Borel and J. Tits, ”Homomorphismes ”abstraits” de groupes algébriques semi-simples,” Ann. Math., 73, 499–571 (1973). · Zbl 0272.14013 · doi:10.2307/1970833
[194] J. Brenner, ”The linear homogeneous groups. III.” Ann. Math., 71, 210–223 (1960). · Zbl 0103.26302
[195] J. Browkin and J. Hurrelbrink, ”On the generation of K 2 $ \(\backslash\)left( \(\backslash\)mathcal{O} \(\backslash\)right) $ by symbols,” Lecture Notes Math., 1046, 29–31 (1982). · doi:10.1007/BFb0072015
[196] E. I. Bunina, ”Automorphisms of adjoint Chevalley groups of types A l , D l , E l over local rings,” arXiv:math/0702046, 1–20 (2007).
[197] E. I. Bunina, ”Automorphisms of Chevalley groups of types B2 and G2 over local rings,” arXiv:math/0711.0531, 1–21 (2007).
[198] E. I. Bunina, ”Automorphisms of Chevalley groups of type F4 over local rings with 1/2,” J. Algebra, 323, 2270–2289 (2010). · Zbl 1195.20054 · doi:10.1016/j.jalgebra.2009.12.034
[199] K.-U. Bux and K. Wortman, ”A geometric proof that SL2 $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ {t,{t\^{-1 }}} \(\backslash\)right]} \(\backslash\)right) $ is not finitely presented,” Algebr. Geom. Topol., 6, 839–852 (2006). · Zbl 1128.20037 · doi:10.2140/agt.2006.6.839
[200] K.-U. Bux and K. Wortman, ”Finiteness properties of arithmetic groups over function fields,” Invent. Math., 167, 355–378 (2007). · Zbl 1126.20030 · doi:10.1007/s00222-006-0017-y
[201] K.-U. Bux, A. Mohammadi, and K. Wortman, ”SL n $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ x \(\backslash\)right]} \(\backslash\)right) $ is not FP n-1,” Comment. Math. Helv., 85, 151–164 (2010). · Zbl 1188.20047 · doi:10.4171/CMH/191
[202] Cao Chongguang and Wang Luqun, ”Normal subgroups of symplectic groups over rings with one in its stable range,” Acta Math. Sinica, 29, 323–326 (1986). · Zbl 0608.20031
[203] D. Carter and G. E. Keller, ”Bounded elementary generation of SL n $ \(\backslash\)left( \(\backslash\)mathcal{O} \(\backslash\)right) $ ,” Amer. J. Math, 105, 673–687 (1983). · Zbl 0525.20029 · doi:10.2307/2374319
[204] D. Carter and G. E. Keller, ”Elementary expressions for unimodular matrices,” Commun. Algebra, 12, 379–389 (1984). · Zbl 0572.20030 · doi:10.1080/00927878408823008
[205] D. Carter and G. E. Keller, ”Bounded elementary expressions in SL(2, $ \(\backslash\)mathcal{O} $ ),” Preprint Univ. Virginia (1985).
[206] D. Carter and G. E. Keller, ”’The congruence subgroup problem for nonstandard models,” Preprint Univ. Virginia (1985).
[207] D. Carter, G, E. Keller, and E. Paige, ”Bouncled expressions in SL(2, $ \(\backslash\)mathcal{O} $ ).” Preprint Univ. Virginia (1985).
[208] R. W. Carter and Yu Chen, ”Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings,” J. Algebra, 155, 44–94 (1993). · Zbl 0783.22007
[209] J.-L. Cathelineau, ”The tangent complex to the Bloch–Suslin complex,” Bull. Soc. Math. France, 135, 565–597 (2007). · Zbl 1217.11065
[210] C. Chang, ”The structure of the symplectic groups over semi-local domains,” J. Algebra, 35, 457–476 (1975). · Zbl 0326.20041 · doi:10.1016/0021-8693(75)90059-9
[211] C. N. Chang, ”Orthogonal groups over semi-local domains,” J. Algebra, 37, 137–164 (1975). · Zbl 0363.20036 · doi:10.1016/0021-8693(75)90093-9
[212] R. Charney, ”Homology stability for GL n over a Dedekind domain,” Inv. Math., 56, 1–17 (1980). · Zbl 0427.18013 · doi:10.1007/BF01403153
[213] R. Charney, ”On the problem of homology stability for congruence subgroups,” Comm. Algebra, 12, 2081–2123 (1984). · Zbl 0542.20023 · doi:10.1080/00927878408823099
[214] R. Charney, ”A generalization of a theorem of Vogtmann,” J. Pure Appl. Algebra, 44, 107–125 (1987). · Zbl 0615.20024 · doi:10.1016/0022-4049(87)90019-3
[215] P. Chattopadhyay and R. A. Rao, ”Elementary symplectic orbits and improved K1-stability,” J. K-theory, 7, No. 2, 389–403 (2011). · Zbl 1218.19001 · doi:10.1017/is010002021jkt109
[216] Chen Huanyin and Chen Miaosen, ”On products of three triangular matrices over associative rings,” Linear Algebra Applic., 387, 297–311 (2004). · Zbl 1057.15011 · doi:10.1016/j.laa.2004.01.023
[217] Chen Sheng and You Hong, ”Subrings in imaginary quadratic fields which are not universal for GE2,” Acta Arithm., 107, No. 3, 299–305 (2003). · Zbl 1024.19001 · doi:10.4064/aa107-3-6
[218] Chen Yu, ”Isomorphic Chevalley groups over integral domains,” Rend. Sem. Mat. Univ. Padova, 92, 231–237 (1994). · Zbl 0831.14021
[219] Chen Yu, ”On representations of elementary subgroups of Chevalley groups over algebras,” Proc. Amer. Math. Soc., 123, No. 8, 2357–2361 (1995). · Zbl 0836.20059 · doi:10.1090/S0002-9939-1995-1283542-7
[220] Chen Yu, ”Automorphisms of simple Cheyalley groups over $ \(\backslash\)mathbb{Q} $ -algebras,” Tôhoku Math. J., 348, 81–97 (1995). · Zbl 0829.20070
[221] Chen Yu, ”lsomorphisms of adjoint Chevalley groups over integral domains,” Trans. Amer. Math. Soc., 348, No. 2, 521–541 (1996). · Zbl 0848.20035 · doi:10.1090/S0002-9947-96-01521-8
[222] Chen Yu, ”Isomorphisms of Chevalley groups over algebras,” J. Algebra, 226, No. 2, 719–741 (2000). · Zbl 0957.20029 · doi:10.1006/jabr.1999.8133
[223] Chen Yu, ”Representation of degree two for elementary matrices over rings,” Comm. Algebra, 30, No. 9, 4219–4234 (2002). · Zbl 1013.20035 · doi:10.1081/AGB-120013315
[224] Chu Huali, ”On the GE2 of graded rings,” J. Algebra, 90, No. 1, 208–216 (1984). · Zbl 0541.20033 · doi:10.1016/0021-8693(84)90207-2
[225] Clin Huali, ”The rows of a matrix in E 2 (R[X]),” Chinese J. Math., 12, No. 4, 245–254 (1984).
[226] P. M. Cohn, ”Some remarks on the invariant basis property,” Topology, 5, 215–228 (1966). · Zbl 0147.28802 · doi:10.1016/0040-9383(66)90006-1
[227] P. M. Cohn, ”On the structure of GL2 over a ring,” Inst. Hautes Études Sci. Publ. Math., No. 30, 5–53 (1966).
[228] P. M. Cohn, ”A presentation of GL2 of Euclidean imaginary quadratic number fields,” Mathematika, 15, 156–163 (1968). · Zbl 0169.34501 · doi:10.1112/S0025579300002515
[229] P. M. Cohn, ”Automorphisms of two-dimensional linear groups over Euclidean domains,” J. London Math. Soc., 1, 279–292 (1969). · Zbl 0182.35801 · doi:10.1112/jlms/s2-1.1.279
[230] P. M. Cohn, ”K2 of polynomial rings and of free algebras,” in: Proceedings of the Conference on Ring Theory, Academic Press, N. Y. – London (1972), pp. 117–123.
[231] P. M. Cohn and L. Gerritzen, ”On the group of symplectic matrices over a free associative algebra,” J. London Math. Soc., 63, No. 2, 353–363 (2001). · Zbl 1016.20033 · doi:10.1017/S0024610700001939
[232] G. Cooke and P. J. Weinberger, ”On the construction of division chains in algebraic number fields with application to SL2,” Comm. Algebra, 3, 481–524 (1975). · Zbl 0315.12001 · doi:10.1080/00927877508822057
[233] G. Corach and A. R. Larotonda, ”Le rang stable de certaines algèbres d’opérateurs,” C. R. Acad. Sci. Paris, Sér I. Mathématique, 296, No. 23, 949–951 (1983). · Zbl 0528.18005
[234] D. L. Costa, ”Zero-dimensionality and the GE2 of polynomial rings,” J. Pure Appl. Algebra, 50, 223–229 (1988). · Zbl 0654.20058 · doi:10.1016/0022-4049(88)90101-6
[235] D. L. Costa and G. E. Keller, ”On the normal subgroups of SL(2,A),” J. Pure Appl. Algebra, 53, 201–226 (1988). · Zbl 0654.20051 · doi:10.1016/0022-4049(88)90123-5
[236] D. L. Costa and G. E. Keller, ”On the normal subgroups of GL(2,A),” J. Algebra, 135, 395–226 (1990). · Zbl 0726.20033 · doi:10.1016/0021-8693(90)90297-2
[237] D. L. Costa and G. E. Keller, ”Normal subgroups of SL(2,A),” Bull. Amer. Math. Soc., 24, 131–135 (1991). · Zbl 0766.20009 · doi:10.1090/S0273-0979-1991-15968-9
[238] D. L. Costa and G. E. Keller, ”The E(2, A) sections of SL(2, A),” Ann. Math., 134, No. 1, 159–188 (1991). · Zbl 0743.20048 · doi:10.2307/2944335
[239] D. L. Costa and G. E. Keller, ”Radix redux: normal subgroups of symplectic group,” J. reine angew. Math., 427, 51–105 (1992). · Zbl 0739.20023
[240] D. L. Costa and G. E. Keller, ”Abstract radices,” Comm. Algebra, 25, No. 7, 2099–2104 (1997). · Zbl 0886.20030 · doi:10.1080/00927879708825974
[241] D. L. Costa and G. E. Keller, ”Power residue symbol and the central sections of SL(2, A),” K-Theory, 15, No. 1, 33–98 (1998). · Zbl 0921.20048 · doi:10.1023/A:1007710220868
[242] D. L. Costa and G. E. Keller, ”On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999). · Zbl 0944.20034 · doi:10.1090/S0002-9947-99-02231-X
[243] R. K. Dennis, ”Stability for K2,” Lecture Notes. Math., 353, 85–94 (1973). · doi:10.1007/BFb0059262
[244] R. K. Dennis, ”The GE2 property for discrete subrings of $ \(\backslash\)mathbb{C} $ ,” Proc. Amer. Math. Soc., 50, 77–82 (1975). · Zbl 0324.20046
[245] R. K. Dennis and M. Krusemeyer, ”K2(A[X, Y]/XY), a problem of Swan and related computations,” J. Pure Appl. Algebra, 15, 125–148 (1979). · Zbl 0405.18009 · doi:10.1016/0022-4049(79)90029-X
[246] R. K. Dennis, B. Magurn, and L. N. Vaserstein, ”Generalized Euclidean group rings,” J. reine angew. Math., 351, 113–128 (1984). · Zbl 0527.16007
[247] R. K. Dennis and M. R. Stein, ”The functor K2: a survey of computations and problems,” Lecture Notes Math., 342, 243–280 (1972).
[248] R. K. Dennis and M. R. Stein, ”Injective stability for K2 of local rings,” Bull. Amer. Math. Soc., 80, 1010–1013 (1974). · Zbl 0299.18007 · doi:10.1090/S0002-9904-1974-13614-1
[249] R. K. Dennis and M. R. Stein, ”K2 of discrete valuation rings,” Advances Math., 18, 182–238 (1975). · Zbl 0318.13017 · doi:10.1016/0001-8708(75)90157-7
[250] R. K. Dennis and L. N. Vaserstein, ”On a question of M. Newman 0n the number of commutators,” J. Algebra, 118, 150–161 (1988). · Zbl 0649.20048 · doi:10.1016/0021-8693(88)90055-5
[251] R. K. Dennis and L. N. Vaserstein, ”Commutators in linear groups,” K-theory, 2, 761–767 (1989). · Zbl 0676.20024 · doi:10.1007/BF00538432
[252] W. Dicks and B. Hartley, ”On homomorplisms between special linear groups over division rings,” Comm. Algebra, 19, 1919–1943 (2001). · Zbl 0729.20020
[253] M. H. Dull, ”Automorphisms of PSL2 over domains with few units.” J. Algebra, 27, 372–379 (1973). · Zbl 0283.20032 · doi:10.1016/0021-8693(73)90112-9
[254] M. H. Dull, ”Automorphisms of the two-dimensional linear groups over integral domains,” Amer. J. Math., 41, 1–40 (1974). · Zbl 0308.20037 · doi:10.2307/2373578
[255] M. J. Dunwoody, ”K2 of a Euclidean ring,” J. Pure Appl. Algebra, 7, 563–58 (1976). · Zbl 0318.13016
[256] W. G. Dwyer, ”Twisted homological stability for general linear groups,” Ann. Math., 111, 239–251 (1980). · doi:10.2307/1971200
[257] P. Elbaz-Vincent, ”The indecomposable K 3 of rings and homology of SL2,” J. Pure Appl. Algebra, 132, No. 1, 27–71 (1998). · Zbl 0926.19001 · doi:10.1016/S0022-4049(97)00080-7
[258] P. Elbaz-Vincent, ”Homology of linear groups with coefficients in the adjoint action and K-theory,” K-Theory, 16, No. 1, 35–50 (1999). · Zbl 0918.19001 · doi:10.1023/A:1007760618741
[259] E. Ellers and H. Ishibashi, ”Factorization of transformations over a local ring,” Linear Algebra. Appl., 85, No. 1, 17–27 (1987). · Zbl 0609.15008 · doi:10.1016/0024-3795(87)90205-9
[260] E. W. Ellers and H. Lausch, ”Length theorems for the general linear group of a module over a local ring,” J. Austral. Math. Soc. Ser. A, 46, 122–131 (1989). · Zbl 0702.20031 · doi:10.1017/S144678870003041X
[261] E. W. Ellers and H. Lausch, ”Generators for classical groups of modules over local rings,” J. Geometry, 39, No. 1–2, 60–79 (1990). · Zbl 0716.20027 · doi:10.1007/BF01222140
[262] I. V. Erovenko, ”SL n (F[x]) is not boundedly generated by elementary matrices: explicit proof,” Electronic J. Linear Algebra, 11, 162–167 (2004). · Zbl 1073.20026
[263] I. V. Erovenko and A. S. Rapinchuk, ”Bounded generation of some S-arithmetic orthogonal groups,” C. R. Acad. Sci., 333, No. 5, 395–398 (2001). · Zbl 1010.20033
[264] I. Y. Erovenko and A. S. Rapinchuk, ”Bounded generation of S-arithmetic subgroups of isotropic orthogonal groups over number fields,” J. Number Theory, 119, No. 1, 28–48 (2006). · Zbl 1168.20020 · doi:10.1016/j.jnt.2005.10.006
[265] D. R. Estes and J. Ohm, ”Stable range in commutative rings,” J. Algebra, 7, No. 3, 343–362 (1967). · Zbl 0156.27303 · doi:10.1016/0021-8693(67)90075-0
[266] B. Fine and M. Newman, ”The normal subgroup structure of the Picard groups,” Trans. Amer. Math. Soc., 302, 769–786 (1987). · Zbl 0624.20031 · doi:10.1090/S0002-9947-1987-0891646-3
[267] D. Flöge, ”Zur Struktur der PSL2 über einigen irnaginär-quadratischen Zahlringen,” Math. Z., 183, 255–279 (1983). · doi:10.1007/BF01214824
[268] T. Fournelle, S. Sidki, and K. Weston, ”On algebraic embeddings of rings into groups,” Arch. Math., 51, 425–433 (1988). · Zbl 0629.20010 · doi:10.1007/BF01198626
[269] M. R. Gabel, ”Lower bounds on the stable range of polynomial rings,” Pacific J. Math., 61, No. 1, 117–120 (1975). · Zbl 0322.13011 · doi:10.2140/pjm.1975.61.117
[270] M. R. Gabel and A. V. Geramita, ”Stable range for matrices,” J. Pure Appl. Algebra, 5, No. 1, 97–112 (1974); Erratum, ibid. 7, 236 (1976). · Zbl 0303.18004
[271] A. S. Garge and R. A. Rao, ”A nice group structure on the orbit space of unimodular vectors,” K-Theory, 38, No. 2, 113–133 (2008). · Zbl 1143.13013 · doi:10.1007/s10977-007-9011-4
[272] A. S. Garge, ”The Steinberg formula for orbit groups,” Expositiones Math., 27, 341–349 (2009). · Zbl 1173.13305 · doi:10.1016/j.exmath.2009.02.008
[273] S. C. Geller, ”On the GE n of a ring,” Ill. J. Math., 21, No. 1, 109–112 (1977). · Zbl 0346.16001
[274] S. C. Geller and C. A. Weibel, ”K1 (A, B, I),” J. reine angew. Math., 342, 12–34 (1983). · Zbl 0503.18009
[275] S. C. Geller and C. A. Weibel, ”Subgroups of the elementary and Steinberg groups of congruence level I 2,” J. Pure Appl. Algebra, 35, 123–132 (1985). · Zbl 0552.18006 · doi:10.1016/0022-4049(85)90035-0
[276] S. C. Geller and C. A. Weibel, ”K1 (A, B, I). II,” K-Theory, 2, 753–760 (1989). · Zbl 0675.18010 · doi:10.1007/BF00538431
[277] L. Gerritzen, ”Symplectic 2 {\(\times\)} 2 matrices over free algebras,” Indag. Math., 10, No. 4, 507–512 (1999). · Zbl 1029.20024 · doi:10.1016/S0019-3577(00)87903-3
[278] I. Z. Golubchik, ”lsomorphisms of the general linear group GL n (R), n 4, over an associative ring,” Contemp. Math., 131, No. 1, 123–136 (1992). · Zbl 0765.20023 · doi:10.1090/conm/131.1/1175767
[279] K. R. Goodearl and P. Menal, ”Stable range one for rings with many units,” J. Pure Appl. Algebra, 54, 261–287 (1988). · Zbl 0653.16013 · doi:10.1016/0022-4049(88)90034-5
[280] D. R. Grayson, ”SK1 of an interesting principal ideal domain,” J. Pure Appl. Algebra, 20, 157–163 (1981). · Zbl 0467.18004 · doi:10.1016/0022-4049(81)90089-X
[281] Sh. M. Green, ”Generators and relations for K2 of a division ring,” Lecture Notes Math., 551, 74–76 (1976). · doi:10.1007/BFb0079996
[282] Sh. M. Green, ”Generators and relations for the special linear group over a division ring,” Proc. Amer. Math. Soc., 62, No. 2, 229–232 (1977). · Zbl 0381.20032 · doi:10.1090/S0002-9939-1977-0430084-3
[283] F. J. Grunewald, J. Mennicke, and L. N. Vaserstein, ”On symplectic groups over polynomial rings,” Math. Z., 206, No. 1, 35–56 (1991). · Zbl 0725.20038 · doi:10.1007/BF02571323
[284] F. J. Grunevvald, J. Mennicke, and L. N. Vaserstein, ”On the groups SL2 $ \(\backslash\)left( {\(\backslash\)mathbb{Z}\(\backslash\)left[ x \(\backslash\)right]} \(\backslash\)right) $ and SL2 (K[x, y]),” Israel J. Math., 86, No. 1–3, 157–193 (1994). · Zbl 0805.20042 · doi:10.1007/BF02773676
[285] F. J. Grunewald and J. Schwermer, ”Free non-Abelian quotients ot SL2 over orders of imaginary quadratic number fields,” J. Algebra, 69, 298–304 (1981). · Zbl 0461.20026 · doi:10.1016/0021-8693(81)90206-4
[286] D. Guin, ”Stabilité de l’homologie du groupe linéare et K-théorie algébrique,” C. R. Acad. Sci. Paris, 304, 219–222 (1987). · Zbl 0609.18005
[287] D. Guin, ”Homologie du groupe linéare et K-théorie de Milnor des anneaux,” J. Algebra, 123, No. 1, 27–59 (1989). · Zbl 0669.20037 · doi:10.1016/0021-8693(89)90033-1
[288] S. K. Gupta and M. P. Murthy, ”Suslin’s work on linear groups over polynomial rings and Serre problem,” ISI Lect. Notes, 8 (1980). · Zbl 0453.13007
[289] G. Habdank, ”A classification of subgroups of {\(\Lambda\)}-quadratic groups normalized by relative elementary subgroups,” Dissertation Universitat Bielefeld (1987). · Zbl 0821.19002
[290] G. Habdank, ”A classification of subgroups of {\(\Lambda\)}-quadratic groups normalized by relative elementary subgroups,” Adv. Math., 110, No. 2, 191–233 (1995). · Zbl 0821.19002 · doi:10.1006/aima.1995.1008
[291] U. Hadad, ”Uniform Kazhdan constant for some familes of linear groups,” J. Algebra, 318, No. 2, 607–618 (2007). · Zbl 1148.20032 · doi:10.1016/j.jalgebra.2007.08.012
[292] A. J. Hahn, ”On the homomorphisms of the integral linear groups,” Math. Ann., 197, 234–250 (1972). · Zbl 0244.20031 · doi:10.1007/BF01428229
[293] A. J. Hahn, ”lsomorphisms of the integral classical groups and their congruence subgroups,” Amer. J. Math., 97, No. 4, 865–887 (1975). · Zbl 0405.20044 · doi:10.2307/2373677
[294] A. J. Hahn, ”Cayley algebras and the automorphisms of PO’8 (V) and P{\(\Omega\)}8 (V),” Amer. J. Math., 98, No. 4, 953–987 (1976). · Zbl 0363.20033 · doi:10.2307/2374036
[295] A. J. Hahn, ”Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains,” J. Algebra, 45, 210–246 (1977). · Zbl 0363.20034 · doi:10.1016/0021-8693(77)90369-6
[296] A. J. Hahn, ”Isomorphisms theory for orthogonal groups over arbitrary integral domains,” J. Algebra, 51 (1978), 233–287. · Zbl 0375.20032 · doi:10.1016/0021-8693(78)90147-3
[297] A. J. Hahn, ”Category equivalences and linear groups over rings.” J. Algebra, 77, No. 2, 505–543 (1982). · Zbl 0489.20040 · doi:10.1016/0021-8693(82)90269-1
[298] A. J. Hahn, ”The finite presentability of linear groups.” Contemp. Math., 82, 23–33 (1989). · Zbl 0667.20037 · doi:10.1090/conm/082/982274
[299] A. J. Hahn, D. G. James, and B. Weisfeiler, ”Homomorphisms of algebraic and classical groups: a survey,” Canad. Math. Soc. Proc., 4, 249–296 (1984). · Zbl 0547.20036
[300] A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin et al. (1989).
[301] R. Hazrat, ”Dimension theory and nonstable K1 of quadratic module,” K-theory, 27, 293–327 (2002). · Zbl 1020.19001 · doi:10.1023/A:1022623004336
[302] R. Hazrat. V. Petrov, and N. Vavilov, ”Relative subgroups in Chevalley groups,” J. K-theory, 5, No. 3, 603–618 (2010). · Zbl 1204.20066 · doi:10.1017/is010003002jkt111
[303] R. Hazrat, A. Stepanov, N. Vavilov, and Zhang Zuhong, ”The yoga of commutators,” Zap. Nauchn. Semin. POMI, 287, 53–82 (2011). · Zbl 1318.20049
[304] R. Hazrat and N. Vavilov, ”K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003). · Zbl 1012.19001 · doi:10.1016/S0022-4049(02)00292-X
[305] R. Hazrat and N. Vavilov, ”Bak’s work on K-theory of rings Qvith an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009). · Zbl 1183.19001 · doi:10.1017/is008008012jkt087
[306] R. Hazrat, N. Vavilov, and Zhang Zuhong, ”Relative unitary commutator calculus, and applications,” J. Algebra, 343, No. 1, 107–137 (2011). · Zbl 1245.20064 · doi:10.1016/j.jalgebra.2011.07.003
[307] R. Hazrat, N. Vavilov, and Zhang Zuhong, ”Relative Commutator Calculus in Chevalley groups,” J. Algebra, 1–32 (2012) (to appear). · Zbl 1292.20053
[308] R. Hazrat and Zhang Zuhong, ”Generalized commutator formula,” Comm. Algebra, 38, No. 4, 1441–1454 (2011). · Zbl 1231.20049 · doi:10.1080/00927871003738964
[309] R. Herman and L. N. Vaserstein, ”The stable range of C*-algebras,” Invent. Math., 77, No. 3, 553–555 (1984). · Zbl 0559.46025 · doi:10.1007/BF01388839
[310] J. A. Hermida-Alonso, ”Linear algebra over commutative rings,” in: Handbook of Algebra, 3 (2003), pp. 3 61. · Zbl 1082.15028
[311] A. C. Hibbard, ”A new presentation of hyperbolic classical groups over a division ring,” J. Algebra, 165, No. 2, 360–379 (1994). · Zbl 0799.20046 · doi:10.1006/jabr.1994.1116
[312] A. C. Hibbard, ”The generation of U2n (R, {\(\Lambda\)}) and the presentation of O+ 2n (R),” J. Algebra, 172, No. 3, 819–829 (1995). · Zbl 0832.20074 · doi:10.1006/jabr.1995.1072
[313] E. K. Hinson, ”Paths of unimodular vectors,” J. Algebra, 142, No. 1, 58–75 (1991). · Zbl 0766.20015 · doi:10.1016/0021-8693(91)90216-U
[314] E. K. Hinson, ”Word length in elementary matrices,” J. Algebra, 142, No. 1, 76–80 (1991). · Zbl 0766.20016 · doi:10.1016/0021-8693(91)90217-V
[315] E. K. Hinson, ”On Vaserstein’s power operation on elementary orbits,” Comm. Algebra (2011). · Zbl 0795.20034
[316] Hua Lokeng and I. Reiner, ”Automorphisms of the unimodular group,” Trans. Amer. Math. Soc., 71, 331–348 (1951). · Zbl 0045.30402 · doi:10.1090/S0002-9947-1951-0043847-X
[317] J. Huebschmann, ”Stem extensions of the infinite general linear group and large Steinberg groups,” Lecture Notes Math., 966, 108–111 (1980). · doi:10.1007/BFb0062169
[318] J. E. Humphreys, ”On the automorphisms of infinite Chevalley groups,” Canad. J. Math., 21, No. 1, 908–911 (1969). · Zbl 0181.03803 · doi:10.4153/CJM-1969-099-7
[319] J. Hurrelbrink, ”Endlich präsentierte arithmetische Gruppen und K2 über Laurent-Polynomringen,” Math. Ann., 225, 123–129 (1977). · doi:10.1007/BF01351716
[320] J. Hurrelbrink, ”The elements of K2 $ \(\backslash\)left( {{{\(\backslash\)mathbb{Z}}_S}} \(\backslash\)right) $ ,” Manuscripta Math., 24, 173–177 (1978). · Zbl 0374.13009 · doi:10.1007/BF01310051
[321] J. Hurrelbrink, ”Endlich präsentierte arithmetische Gruppen im Funktionenkörperfall,” Math. Arm., 225, No. 2, 123–129 (1977). · Zbl 0325.20043
[322] J. Hurrelbrink, ”On K2 $ \(\backslash\)left( \(\backslash\)mathcal{O} \(\backslash\)right) $ and presentations of SL n $ \(\backslash\)left( \(\backslash\)mathcal{O} \(\backslash\)right) $ in the real quadratic ease,” J. reine angew. Math., 319, 213–220 (1980).
[323] J. Hurrelbrink, ”On the size of certain K-groups,” Comm. Algebra, 10, 1873–1889 (1982). · Zbl 0502.12010 · doi:10.1080/00927878208822809
[324] J. Hurrelbrink, ”On presentations of SL n $ \(\backslash\)left( {{{\(\backslash\)mathbb{Z}}_S}} \(\backslash\)right) $ ,” Comm. Algebra, 11, No. 9, 937–947 (1983). · Zbl 0511.20039
[325] J. Hurrelbrink and U. Rehmann, ”Eine endliehe Präsentation der Gruppe G2 $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Math. Z., 141, 243–251 (1975). · doi:10.1007/BF01247310
[326] J. Hurrelbrink and U. Rehmann, ”Zur endliche Präsentation von Chevalleygruppen über den euklidischen imaginär-quadratischen Zahlringen,” Arch. Math., 27, No. 1, 123–133 (1976). · Zbl 0347.20028 · doi:10.1007/BF01224652
[327] K. Hutchinson, ”A new approach to Matsumoto’s theorem,” K-Theory, 4, No. 2, 181–200 (1990). · Zbl 0725.19001 · doi:10.1007/BF00533156
[328] K. Hutchinson, ”Conditions under which K2 $ \(\backslash\)left( {{{\(\backslash\)mathcal{O}}_F}} \(\backslash\)right) $ is not generated by Dennis–Stein symbols,” Acta Arithm., 89, 189–199 (1999). · Zbl 0936.11066
[329] F. Ischebeck, ”Hauptidealringe mit nichttrivialer SK1-Gruppe,” Arch. Math., 35, 138–139 (1980). · Zbl 0419.13007 · doi:10.1007/BF01235330
[330] H. Ishibashi, ”Generators of a symplectic group over a local valuation domain,” J. Algebra, 53, No. 1, 125–128 (1978). · Zbl 0381.15005 · doi:10.1016/0021-8693(78)90209-0
[331] H. lshibashi, ”Generators of O n (V) over a quasi semiloeal semihereditary domain,” Comm. Algebra, 7, No. 10, 1043–1064 (1979). · Zbl 0406.20038 · doi:10.1080/00927877908822390
[332] H. Ishibashi, ”Generators of Sp n (V) over a quasi semilocal semihereditary domain,” Comm. Algebra. 7, No. 16, 1673–1683 (1979). · Zbl 0412.20036 · doi:10.1080/00927877908822423
[333] H. Ishibashi, ”Generators of U n (V) over a quasi sernilocal semihereclitary domain,” J. Algebra, 60, No. 1, 199–203 (1979). · Zbl 0418.20040 · doi:10.1016/0021-8693(79)90115-7
[334] H. lshibashi, ”Generators of Sp n (V) over a quasi semilocal semihereditary ring,” J. Pure Appl. Algebra, 22, No. 2, 121–129 (1981). · Zbl 0461.20030 · doi:10.1016/0022-4049(81)90054-2
[335] H. Ishibashi, ”Generators of orthogonal groups over valuation rings,” Canad. J. Math., 33, No. 1, 116–128 (1981). · Zbl 0458.20044 · doi:10.4153/CJM-1981-011-3
[336] H. Ishibashi, ”Structure of O(V) over full rings,” J. Algebra, 75, No. 1, 1–9 (1982). · Zbl 0485.20036 · doi:10.1016/0021-8693(82)90059-X
[337] H. lshibashi, ”Involutory expressions of elements in GL n $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ and SL n $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Linear Algebra Applic. 219, 165–177 (1995). · Zbl 0823.20048 · doi:10.1016/0024-3795(93)00206-F
[338] D. G. James, ”Unitary groups over local rings,” J. Algebra, 52, No. 2, 354–363 (1978). · Zbl 0378.20038 · doi:10.1016/0021-8693(78)90245-4
[339] D. G. James, ”Projective geometry over rings with stable range condition,” Linear Multilinear Algebra, 23, No. 4, 299–304 (1988). · Zbl 0658.51002 · doi:10.1080/03081088808817883
[340] D. G. James, W. C. Waterhouse, and B. Weisfeiler, ”Abstract homomorphisms of algebraic groups: problems and bibliography,” Commun. Algebra, 9, 95–114 (1981). · Zbl 0452.20045 · doi:10.1080/00927878108822565
[341] W. Jehne, ”Die Struktur der symplektischen Gruppen über lolcalen und dedekindsehen Ringen,” Sitzungber. Heidelberg Akad.Wiss., Math. Naturwiss, 3, 189–235 (1962/64).
[342] G. A. Jones, ”Congruence and noncongruence subgroups of the modular group: a survey,” London Math. Soc. Lect. Notes, 121, 223–234 (1986).
[343] S. Jose and R. A. Rao, ”A local global principle for the elementary unimodular veetor group,” Contemp. Math., 390, 119–125 (2005). · Zbl 1191.19001 · doi:10.1090/conm/390/07298
[344] S. Jose and R. A. Rao. ”A structure theorem for the elementary unimodular vector group,” Trans. Amer. Math. Soc., 358, No. 7, 3097–3112 (2005). · Zbl 1089.19001 · doi:10.1090/S0002-9947-05-03794-3
[345] B. Kahn, ”K2 d’un anneau Euclidien,” J. Pure Appl. Algebra, 34, 255–257 (1984). · Zbl 0552.18002 · doi:10.1016/0022-4049(84)90038-0
[346] W. van der Kallen, ”Le K2 des nombres duaux,” C. R. Acad. Sci. Paris, Ser. A–B, 1204–1207 (1971). · Zbl 0225.13006
[347] W. van der Kallen, ”The Schur multipliers of SL(3, $ \(\backslash\)mathbb{Z} $ ) and SL(4, $ \(\backslash\)mathbb{Z} $ ),” Math. Ann., 212, 47–49 (1974). · Zbl 0295.20052 · doi:10.1007/BF01343979
[348] W. van der Kallen, ”lnjective stability for K2,” Lecture Notes Math., 551, 77–154 (1976). · doi:10.1007/BFb0079997
[349] W. van der Kallen, ”Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977). · Zbl 0375.20034
[350] W. van der Kallen, ”The K2 of rings with many units,” Ann. Sci. École Norm. Sup., 4 éme Sér., 10, 473–515 (1977). · Zbl 0393.18012
[351] W. van der Kallen, ”Homology stability for linear groups,” Invent. Math., 60, 269–295 (1980). · doi:10.1007/BF01390018
[352] W. van der Kallen, ”Stability for K2 of Dedekind rings of arithmetic type,” Lecture Notes Math., 854, 217–248 (1981). · Zbl 0459.13012 · doi:10.1007/BFb0089523
[353] W. van der Kallen, ”SL3 $ \(\backslash\)left( {\(\backslash\)mathbb{C}\(\backslash\)left[ x \(\backslash\)right]} \(\backslash\)right) $ does not have bounded word length,” Springer Lecture Notes Math., 966, 357–361 (1982). · Zbl 0935.20501 · doi:10.1007/BFb0062183
[354] W. van der Kallen, ”A group structure on certain orbit sets of unimodular rows,” J. Algebra, 82, 363–397 (1983). · Zbl 0518.20035 · doi:10.1016/0021-8693(83)90158-8
[355] W. van der Kallen, ”Vaserstein’s prestabilization theorem over commutative rings,” Comm. Algebra. 15, No. 3, 657–663 (1987). · Zbl 0614.16019 · doi:10.1080/00927878708823435
[356] W. van der Kallen, ”A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989). · Zbl 0665.18011 · doi:10.1016/0022-4049(89)90035-2
[357] W. van der Kallen, ”Presenting K2 with generic symb0ls,” in: Algebraic K-theory: Connections with Geometry and Topology (1989), pp. 509–516.
[358] W. van der Kallen, ”From Mennicke symbol to Euler class groups,” in: Algebra, Arithmetic, and Geometry (Mumbai, 2000), Mumbai (2002), pp. 341–354. · Zbl 1027.19006
[359] W. van der Kallen, H. Maazen, and J. Stienstra, ”A presentation of some K2(n, R),” Bull. Amer. Math. Soc., 81, 934–936 (1975). · Zbl 0337.13012 · doi:10.1090/S0002-9904-1975-13894-8
[360] W. van der Kallen, B. Maagurn, and L. N. Vaserstein, ”Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 543–557 (1988). · Zbl 0619.14013 · doi:10.1007/BF01388786
[361] W. van der Kallen and M. R. Stein, ”On the Schur multiplier of Steinberg and Chevalley groups over commutative rings,” Math. Z., 155, 83–94 (1977). · doi:10.1007/BF01322610
[362] W. van der Kallen and J. Stienstra, ”The relative K2 of truncated polynomial rings,” J. Pure Appl. Algebra, 34, 277–289 (1984). · Zbl 0548.13008 · doi:10.1016/0022-4049(84)90041-0
[363] I. Kaplansky, ”Elementary divisors and modules,” Trans. Amer. Math. Soc., 66, 464–491 (1949). · Zbl 0036.01903 · doi:10.1090/S0002-9947-1949-0031470-3
[364] M. Kassabov, ”Kazhdan constants for SL n $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Int. J. Alg. Comput., 15, No. 5–6, 971–995 (2005). · Zbl 1097.22007 · doi:10.1142/S0218196705002712
[365] M. Kassabov and N. Nikolov, ”Universal lattices and property tau,” Invent. Math., 165, 209–224 (2006). · Zbl 1139.19003 · doi:10.1007/s00222-005-0498-0
[366] M. Kassabov and M. Sapir, ”Nonlinearity of matrix groups,” J. Topol. Anal., 1, No. 3, 251–260 (2009). · Zbl 1189.20042 · doi:10.1142/S1793525309000138
[367] S. A. Katre, R. A. Rao, and D. N. Sheth, ”Solving linear systems via Pfaffians,” Linear Algebra Applic., 430, 968–975 (2009). · Zbl 1216.15004 · doi:10.1016/j.laa.2008.09.021
[368] K. Keller, ”Nieht endlich erzeugbare arithmetische Gruppen über Funktioncnkorper,” Thesis Univ. Frankfurt (1980).
[369] M. Kervaire, ”Multiplicateurs de Schur et K-theory,” in: Essays on Topology and Related Topics, Mém. dérliés à G. de Rham, Springer-Verlag, Berlin et al. (1970). pp. 212–225.
[370] F. Keune, ”(t2 - t)-reciprocities of the affine line and Matsumoto’s theorem,” Invent. Math., 28, 185–192 (1975). · Zbl 0331.18017 · doi:10.1007/BF01436072
[371] F. Keune, ”The relativisation of K2,” J. Algebra, 54, No. 1, 159–177 (1978). · Zbl 0403.18009 · doi:10.1016/0021-8693(78)90024-8
[372] F. Keune. ”Another presentation for the K2 of a local domain,” J. Pure Appl. Algebra, 22, 131–141 (1981). · Zbl 0491.18009 · doi:10.1016/0022-4049(81)90055-4
[373] F. Keune, ”The K2 of a. 1-fold stable ring,” Lecture Notes Math., 1046, 193–228 (1984). · Zbl 0552.18005 · doi:10.1007/BFb0072023
[374] G. Kiralis, S. Krstić, and J. McCool, ”Finite presentability of {\(\Phi\)} n (G), GL n ( $ \(\backslash\)mathbb{Z} $ G) and their elementary subgroups and Steinberg groups,” Proc. London Math. Soc., 73, No. 3, 575–622 (1996). · Zbl 0865.20025 · doi:10.1112/plms/s3-73.3.575
[375] F. Kirchheimer, ”Die Normalteiler der symplektisehen Gruppen über beliebigen lokalen Ringen,” J. Algebra, 50, 228–241 (1978). · Zbl 0368.20030 · doi:10.1016/0021-8693(78)90184-9
[376] F. Kirchheimer, ”Über explizite Präsentation Hilbertscher Modulgruppen zu totalreellen Körpern der Klassenzahl eins,” J. reine angew. Math., 321, 120–137 (1981). · Zbl 0445.20014
[377] F. Kirchheimer and J. Wolfart, ”Explizite Präsentation gewisser Hilbertscher Modulgruppen durch Ermagende und Relationen,” J. reine angew. Math., 315, 139–173 (1980). · Zbl 0423.20044
[378] B. Kirkwood and B. McDonald, ”The Witt ring of a. full ring,” J. Algebra, 64, No. 1, 148–166 (1980). · Zbl 0438.13001 · doi:10.1016/0021-8693(80)90139-8
[379] B. Kirkwood and B. McDonald, ”The orthogonal and the special orthogonal groups over a full ring,” J. Algebra, 68, No. 1, 121–143 (1981). · Zbl 0448.20047 · doi:10.1016/0021-8693(81)90289-1
[380] B. Kirkwood and B. McDonald, ”The symlectic group over a ring with one in its stable range,” Pacific J. Math., 92, No. 1, 111–125 (1981). · Zbl 0466.20023 · doi:10.2140/pjm.1981.92.111
[381] S. Klasa, ”On Steinberg groups,” Lecture Notes Math., 353, No. 1, 131–138 (1973). · Zbl 0285.20042 · doi:10.1007/BFb0059265
[382] W. Klingenberg, ”Linear groups over local rings,” Bull. Amer. Math. Soc., 66, 294–296 (1960). · Zbl 0097.01701 · doi:10.1090/S0002-9904-1960-10477-6
[383] W. Klingenberg, ”Lineare Gruppen über lokalen Ringen,” Amer. J. Math., 83, No. 1, 137–153 (1961). · Zbl 0098.02303 · doi:10.2307/2372725
[384] W. Klingenberg, ”Lineare Gruppen über verallgemeinernen Bewertungsringen,” Abh. Math. Semin. Univ. Hamburg., 25, No. 1–2, 23–35 (1961). · Zbl 0100.03005 · doi:10.1007/BF02992773
[385] W. Klingenberg, ”Projektive Geometrie und lineare Algebra über verallgemeinernen Bewertungsringen,” in: Proceedings of the Colloquim on Algebra, Topology, Foundations of Geometry, London, (1962), pp. 99–107. · Zbl 0106.14202
[386] W. Klingenberg, ”Die Struktur der linearen Gruppen über einem niehtkommutativen lokalen Ring,” Arch. Math., 13, 73–81 (1962). · Zbl 0106.25203 · doi:10.1007/BF01650050
[387] W. Klingenberg, ”Symplectic groups over local rings,” Amer. J. Math., 85, No. 2, 232–240 (1963). · Zbl 0117.27201 · doi:10.2307/2373212
[388] A. Klyachko, ”Automorphisms and isomorphisms of Chevalley groups and algebras,” J. Algebra, 322, 2608–2619 (2010). · Zbl 1211.20041 · doi:10.1016/j.jalgebra.2009.08.024
[389] M. Kneser, ”Normal subgroups of integral orthogonal groups,” Lecture Notes Math., 108, 67–71 (1969). · Zbl 0186.37003 · doi:10.1007/BFb0059991
[390] M. Kneser, ”Normalteiler ganzzahliger Spingruppen,” J. reine angew. Math., 311/312, 191–214 (1979). · Zbl 0409.20038
[391] M. Kneser, ”Erzeugung ganzzahliger orthogonaler Gruppen dureh Spiegelungen,” Math. Ann., 255, No. 4, 453–462 (1981). · doi:10.1007/BF01451927
[392] K. P. Knudson, ”The homology of SL2(F[t, t -1]),” J. Algebra, 180, 87–101 (1996). · Zbl 0846.20045 · doi:10.1006/jabr.1996.0053
[393] K. P. Knudson, ”The homology of special linear groups over polynomial rings,” Ann. Sci. École Norm. Sup. 4-eme Ser., 30, No, 3, 385–415 (1997).
[394] K. P. Knudson, ”Unstable homotopy invariance and the homology of SL2( $ \(\backslash\)mathbb{Z} $ [t]),” J. Pure Appl. Algebra, 148, 255–266 (2000). · Zbl 0953.20036 · doi:10.1016/S0022-4049(98)00151-0
[395] K. P. Knudson, ”Homology and finiteness properties of SL2 ( $ \(\backslash\)mathbb{Z} $ [t, t -1]),” Algebr. Geom. Topol., 8, 2253–2261 (2008). · Zbl 1167.20026 · doi:10.2140/agt.2008.8.2253
[396] K, P. Knudson, ”Congruenee subgroups and twisted eohomology of SL n (F[t]). I, II,” J. Algebra 207, No, 2, 695–721 (1998); Comm. Algebra 29, No. 12, 5465–5475 (2001). · Zbl 0907.20043
[397] M.-A. Knus, Quadratic and Hermitian Forms Ouer Rings, Springer Verlag, Berlin et al. (1991).
[398] M. Kolster, ”On injective stability for K2,” Lecture Notes Math., 966, 128–168 (1982). · doi:10.1007/BFb0062173
[399] M. Kolster, ”Improvement of K2-stability under transitive actions of elementary groups,” J. Pure Appl. Algebra, 24, 277–282 (1982). · Zbl 0488.18003 · doi:10.1016/0022-4049(82)90045-7
[400] M. Kolster, ”General symbols and presentations of elementary linear groups,” J. reine angew. Math., 353, 132–164 (1984). · Zbl 0536.18004
[401] M. Kolster, ”K2 of noncommutative local rings,” J. Algebra, 95, No. 1, 173–200 (1985). · Zbl 0588.16019 · doi:10.1016/0021-8693(85)90100-0
[402] S. Krstić and J. McCool, ”The nonfinite presentability of IA(F 3) and GL n (Int[t, t -1],” Invent. Math., 129, 595–606 (1997). · Zbl 0880.20031 · doi:10.1007/s002220050174
[403] S. Krstić and J. McCool, ”Presenting GL n (k,” J. Pure Appl. Algebra, 141, 175–183 (1999). · Zbl 0930.19001 · doi:10.1016/S0022-4049(98)00022-X
[404] M. Kruserneyer, ”Fundamental groups, algebraic K-theory, and a problem of Abjyankar,” Invent. Math., 19, 15–47 (1973). · Zbl 0247.14005 · doi:10.1007/BF01418849
[405] M. Krusemeyer, ”Skewly completable rows and a theorem of Swan and Towber,” Comm. Algebra, 4, No, 4, 657–663 (1975). · Zbl 0348.15009 · doi:10.1080/00927877608822126
[406] S. Krutelevich, ”Jordan algebras, exceptional groups and quadratic composition,” J. Algebra, 314, 924–977 (2007). · Zbl 1163.17032 · doi:10.1016/j.jalgebra.2007.02.060
[407] N. H. J. Lacroix, ”Two-dimensional linear groups over local rings,” Canad. J. Math., 21, 106–135 (1969). · Zbl 0169.34404 · doi:10.4153/CJM-1969-011-8
[408] N. H. J. Lacroix and C. Levesque, ”Sur les sous-groupes normaux de SL2 sur un anneau local,” Canad. Math. Bull., 26, 209–219 (1983). · Zbl 0515.20032 · doi:10.4153/CMB-1983-033-3
[409] T. J. Laffey, ”Expressing unipotent matrices over rings as products of involutions,” Irish Math. Soc. Bull., No. 40, 24–30 (1998). · Zbl 0910.15001
[410] J. Landin and I. Reiner, ”Automorphisms of the general linear group over a principal ideal domain,” Ann. Math., 65, 519–526 (1957). · Zbl 0208.03602 · doi:10.2307/1970063
[411] J. Landin and l. Reiner, ”Automorphisms of the two-dimensional general linear group over a Euclidean ring,” Proc. Amer. Math. Soc., 9, 209–216 (1958). · Zbl 0101.02002
[412] W. G. Leavitt, ”Modules without invariant basis number,” Proc. Amer. Math. Soc., 8, 322–328 (1957). · Zbl 0073.02402 · doi:10.1090/S0002-9939-1957-0083986-1
[413] W. G. Leavitt, ”The module type of a ring,” Trans. Amer. Math. Soc., 103, 113–130 (1962). · Zbl 0112.02701 · doi:10.1090/S0002-9947-1962-0132764-X
[414] R. Lee and R. Szczarba, ”On the homology and cohomology of congruence subgroups,” Invent. Math., 33, 15–53 (1976). · Zbl 0332.18015 · doi:10.1007/BF01425503
[415] H. W. Lenstra, ”K 2 of a global field consists of symbols,” Lecture Notes Math., 551, 69–73 (1976). · Zbl 0345.13008 · doi:10.1007/BFb0079995
[416] H. W. Lenstra, ”Grothendieck groups of Abelian group rings,” J. Pure Appl. Algebra, 20, 173–193 (1981). · Zbl 0467.16016 · doi:10.1016/0022-4049(81)90091-8
[417] A. Leutbecher, ”Euklidischer Algorithmus und die Gruppe GL2,” Math. Ann., 231, 269–285 (1978). · Zbl 0367.16001 · doi:10.1007/BF01420245
[418] Fuan Li, ”The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica (N. S.) 3, No. 3, 247–255 (1987). · Zbl 0638.20028 · doi:10.1007/BF02560038
[419] Fuan Li, ”Local behaviour of systems (, {\(\alpha\)}, {\(\sigma\)}),” Kexue Tongbao, 33, 1445–1447 (1988). (in Chinese)
[420] Fuan Li, ”The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math., Ser. B, 10, No. 3, 341–350 (1989). · Zbl 0683.20034
[421] Fuan Li. ”Finite presentability of Steinberg groups over group rings,” Acta Math. Sinica, New Series, 5, No. 4, 297–301 (1989). · Zbl 0688.16028 · doi:10.1007/BF02107706
[422] Fuan Li, ”Homological meaning of systems (, {\(\alpha\)}, {\(\sigma\)}),” Acta Math. Sinica, 7, No. 4, 348–353 (1991). · Zbl 0795.20027 · doi:10.1007/BF02594891
[423] Fuan Li and Zunxian Li, ”Automorphisms of SL3 (R), GL3 (R),” Contemp. Math., 82, 47–52 (1984). · doi:10.1090/conm/082/982276
[424] Fuan Li and Zunxian Li, ”Isomorphisms of GL3 over commutative rings,” Scientia Sinica, Ser. A, 31, 7–14 (1988). · Zbl 0671.20038
[425] Fuan Li and Mulan Liu, ”Generalized sandwich theorem,” K-Theory, 1, 171–184 (1987). · Zbl 0622.20037 · doi:10.1007/BF00533417
[426] Fuan Li and Hongshuo Ren, ”The automorphisms of two-dimensional linear groups over commutative rings,” Chinese Ann. Math., 10B, No. 1, 50–57 (1989). · Zbl 0688.20029
[427] B. Liehl. ”On the group SL2 over orders of arithmetic type,” J. reine angew. Math., 323, 153–171 (1981). · Zbl 0447.20035
[428] B. Liehl, ”Besehränkte Wortlänge in SL2,” Math. Z., 186, 509–524 (1984). · doi:10.1007/BF01162777
[429] L. Lifschitz and A. Rapinchuk, ”On abstract homomorphisms of Chevalley groups with nonreductive image. I,” J. Algebra, 242, No. 1, 374–399 (2001). · Zbl 0987.20025 · doi:10.1006/jabr.2001.8795
[430] Zongzhu Lin, ”The isomorphism of linear groups over local rings,” Acta Math. Sinica, New Series, 27, No. 4, 528–531 (1984). · Zbl 0575.20042
[431] Shaowu Liu and Luqun Wang, ”Homomorphisms between symplectic groups,” Chinese Ann. Math., Ser. B, 14, No. 3, 287–296 (1993). · Zbl 0797.20037
[432] J. L. Loday, ”Cohomologie et groupe de Steinberg relatifs,” J. Algebra, 54, No. 1, 178–202 (1978). · Zbl 0391.20040 · doi:10.1016/0021-8693(78)90025-X
[433] D. Loukanidis and V. K. Murty, ”Bounded generation for SL n (n 2) and Sp n (n 1),” Preprint (1995).
[434] A. W. Lubotzky, ”Free quotients and the congruence kernel of SL2,” J. Algebra, 77, 411–418 (1982). · Zbl 0495.20021 · doi:10.1016/0021-8693(82)90263-0
[435] A. Yu. Luzgarev, A. V. Stepanov, and N. A. Vavilov, ”Calculations in exceptional groups over rings,” Zap. Nauch. Semin. POMI, 373, 48–72 (2009).
[436] H. Maazen, ”Homology stability for the general linear group,” Ph. D. Thesis, Utrecht (1979).
[437] H. Maazen and J. Stienstra, ”A presentation for K 2 of split radical pairs,” J. Pure Appl. Algebra, 10, 271–294 (1977). · Zbl 0393.18013 · doi:10.1016/0022-4049(77)90007-X
[438] B. A. Magurn, ”SK1 of dihedral groups,” J. Algebra, 51, No. 2, 399–415 (1978). · Zbl 0376.16026 · doi:10.1016/0021-8693(78)90114-X
[439] B. A. Magurn, ”Explicit K 1 of some modular group rings,” J. Pure Appl. Algebra, 206, 3–20 (2006). · Zbl 1093.19001 · doi:10.1016/j.jpaa.2005.01.002
[440] B. A. Magurn, van der W. Kallen, and L. N. Vaserstein, ”Absolute stable rank and Witt cancellation for noncommutative rings,” Invent. Math., 91, 525–542 (1988). · Zbl 0639.16015 · doi:10.1007/BF01388785
[441] K. E. Martin, ”Orthogonal groups over $ \(\backslash\)Re $ (({\(\pi\)})),” Amer. J. Math., 95, 59–79 (1973). · Zbl 0285.20039 · doi:10.2307/2373644
[442] A. W. Mason, ”A note on subgroups of GL(n, A) which are generated by commutators,” J. London Math. Soc., 11, 509–512 (1974). · Zbl 0319.20060
[443] A. W. Mason, ”On subgroups of GL(n, A) which are generated by commutators. II,” J. reine angew. Math., 322, 118–135 (1981). · Zbl 0438.20034
[444] A. W. Mason, ”A further note on subgroups of GL(n, A) which are generated by commutators,” Arch. Math., 37, No. 5, 401–405 (1981). · Zbl 0458.20046 · doi:10.1007/BF01234374
[445] A. W. Mason, ”On nonnormal subgroups of GL n (A) which are normalized by elementary matrices,” Ill. J. Math., 28, 125–138 (1984). · Zbl 0531.20026
[446] A. W. Mason, ”Anomalous normal subgroups of SL2(K[x]),” Quart. J. Math., 36, 345–358 (1985). · Zbl 0578.20037 · doi:10.1093/qmath/36.3.345
[447] A. W. Mason, ”Standard subgroups of GL2(A),” Proc. Edin. Math. Soc., 30, 341–349 (1987). · Zbl 0608.20034 · doi:10.1017/S0013091500026730
[448] A. W. Mason, ”On GL2(A) of a local ring in which 2 is not a unit,” Canad. Math. Bull., 30, 165–176 (1987). · Zbl 0589.20032 · doi:10.4153/CMB-1987-024-6
[449] A. W. Mason, ”Free quotients of congruence subgroups of SL2 over a Dedekind ring of arithmetic type contained in a function field,” Math. Proc. Cambridge Phil. Soc., 101, 421–429 (1987). · Zbl 0619.20030 · doi:10.1017/S0305004100066809
[450] A. W. Mason, ”Free quotients of congruence subgroups of SL2 over a coordinate ring,” Math. Z., 198, 39–51 (1988). · Zbl 0619.20031 · doi:10.1007/BF01183037
[451] A. W. Mason, ”On GL2(A) of a local ring in which 2 is not a unit. Il,” Comm. Algebra, 17, 511–551 (1989). · Zbl 0663.20048 · doi:10.1080/00927878908823743
[452] A. W. Mason, ”Nonstandard, normal subgroups and nonnormal, standard subgroups of the modular group,” Canad. Math. Bull., 32, No. 1, 109–113 (1989). · Zbl 0632.20032 · doi:10.4153/CMB-1989-016-5
[453] A. W. Mason, ”Subnormal subgroups of E n (R) have no free nonabelian quotients, when n 3,” Proc. Edinburgh Math. Soc., 119, No. 1, 113–119 (1991). · Zbl 0718.20024 · doi:10.1017/S0013091500005046
[454] A. W. Mason, ”The order and level of a subgroup of GL2 over a Dedekind ring of arithmetic type,” Proc. Royal Soc. Edinburgh, Sect. A, 119, No. 3–4, 191–212 (1991). · Zbl 0735.20025 · doi:10.1017/S0308210500014773
[455] A. W. Mason, ”Normal subgroups of SL2(k[t]) with or without free quotients,” J. Algebra, 150, No. 2, 281–295 (1992). · Zbl 0776.20014 · doi:10.1016/S0021-8693(05)80032-8
[456] A. W. Mason, ”Congruence hulls in SL n ” J. Pure Appl. Algebra, 89, No. 3, 255–257 (1993). · Zbl 0791.20054 · doi:10.1016/0022-4049(93)90056-Y
[457] A. W. Mason, ”Quotients of the congruence kernels of SL2 over arithmetic Dedekind domains,” Israel J. Math., 91, 77–91 (1995). · Zbl 0836.20069 · doi:10.1007/BF02761640
[458] A. W. Mason, ”Unipotent matrices, modulo elementary matrices, in SL2 over a coordinate ring,” J. Algebra, 203, 134–155 (1998). · Zbl 0914.20045 · doi:10.1006/jabr.1997.7322
[459] A. W. Mason, ”The generalization of Nagao’s theorem to other subrings of the rational function field,” Comm. Algebra, 31, No. 11, 5199–5242 (2003). · Zbl 1036.20046 · doi:10.1081/AGB-120023951
[460] A. W. Mason, ”Stabilziers of edges in general linear groups acting on trees,” J. Group Theory, 4, 97–108 (2001). · Zbl 0981.20041
[461] A. W. Mason and A. Schweizer, ”Nonstandard automorphisms and noncongruence subgroups of SL2 over Dedekind domains contained in function fields,” J. Pure Appl. Algebra, 205, 189–209 (2006). · Zbl 1114.11035 · doi:10.1016/j.jpaa.2005.06.018
[462] A. W. Mason and W. W. Stothers, ”On subgroups of GL(n, A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974). · Zbl 0278.20045 · doi:10.1007/BF01389750
[463] H. Matsumoto, ”Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup., 2, No. 4, 1–62 (1969). · Zbl 0261.20025
[464] B. R. McDonald, Geometric Algebra Over Local Rings, Marcel Dekker, N.Y. (1976). · Zbl 0346.20027
[465] B. R. McDonald, ”Automorphisms of GL n (R),” Trans. Amer. Math. Soc., 215, 145–159 (1976). · Zbl 0339.20012
[466] B. R. McDonald, ”Automorphisms of GL n (R),” Trans. Amer. Math. Soc., 246, 155–171 (1978). · Zbl 0402.20035
[467] B. R. McDonald, ”GL2 of a ring with many units,” Comm. Algebra, 8, 869–888 (1980). · Zbl 0436.20031 · doi:10.1080/00927878008822495
[468] B. R. McDonald, ”Projectivities for rings with many units,” Comm. Algebra, 9, N o. 2, 195–204 (1981). · Zbl 0466.51018 · doi:10.1080/00927878108822572
[469] B. R. McDonald, ”Aut(GL2) for rings with many units,” Comm. Algebra, 9, No. 2, 205–220 (1981). · Zbl 0453.20041 · doi:10.1080/00927878108822573
[470] B. R. McDonald, Linear Algebra Over Commutative Rings, Marcel Dekker, N.Y. (1984). · Zbl 0556.13003
[471] B. R. McDonald, ”Metric geometry over local global commutative rings,” in: Rings and Geometry (1985), pp. 391–415.
[472] B. R. McDonald and B. Hershberger, ”The orthogonal group over a full ring,” J. Algebra, 51, 536–549 (1978). · Zbl 0377.15009 · doi:10.1016/0021-8693(78)90120-5
[473] G. McHardy, ”Endliche und fast-endliche Präsentierbarkeit einiger arithmetischer Gruppen,” Thesis Univ. Frankfurt (1982). · Zbl 0512.20027
[474] L. McQueen and D. R. McDonald, ”Automorphisms of the symplectic group over a local ring,” J. Algebra, 30, 485–495 (1974). · Zbl 0286.20061 · doi:10.1016/0021-8693(74)90219-1
[475] P. Menal and J. Moncasi, ”On regular rings with stable range 2,” J. Pure Appl. Algebra, 24, 25–40 (1982). · Zbl 0484.16006 · doi:10.1016/0022-4049(82)90056-1
[476] P. Menal and J. Moncasi, ”K1 of von Neumann regular rings,” J. Pure Appl. Algebra, 33, No. 3, 295–312 (1984). · Zbl 0541.16021 · doi:10.1016/0022-4049(84)90064-1
[477] P. Menal and L. N. Vaserstein, ”On subgroups of GL2 over noncommutative local rings which are normalized by elementary matrices,” Math. Ann., 285, 221–231 (1989). · Zbl 0662.20039 · doi:10.1007/BF01443515
[478] P. Menal and L. N. Vaserstein, ”On subgroups of GL2 over Banach algebras and von Neumann regular rings which are normalized by elementary matrices,” J. Pure Appl. Algebra, 64, No. 2, 149–162 (1990). · Zbl 0702.20037 · doi:10.1016/0022-4049(90)90154-A
[479] P. Menal and L. N. Vaserstein, ”On the structure of GL2 over stable range one rings,” J. Algebra, 136, No. 1, 99–120 (1991). · Zbl 0724.20034 · doi:10.1016/0021-8693(91)90193-C
[480] J. Mennicke, ”A remark on the congruence subgroup problem,” Math. Scand., 86, 206–222 (2000). · Zbl 0966.20023
[481] J. S. Milne, Algebraic Granps and Arithmetic Groups, http://www.jmi1ne.org/math/ (2006).
[482] B. Mirzaii, ”Homology of classical groups and K-theory,” Ph. D. Thesis, Utrecht Univ., (2005). · Zbl 1114.19003
[483] B. Mirzaii, ”Homology stability for unitary groups. II,” K-Theory, 36, No. 3–4, 305–326 (2005). · Zbl 1114.19003 · doi:10.1007/s10977-006-7109-8
[484] B. Mirzaii, ”Homology of GL n over algebraically closed fields,” J. Landon Math. Soc., 76, 605–621 (2007). · Zbl 1129.19004 · doi:10.1112/jlms/jdm081
[485] B. Mirzaii, ”Homology of GL n : injectivity conjecture for GL4,” Math. Ann., 304, No. 1, 159–184 (2008). · Zbl 1129.19005
[486] B. Mirzaii, ”Third homology of general linear groups,” J. Algebra, 320, No. 5, 1851–1877 (2008). · Zbl 1157.19003 · doi:10.1016/j.jalgebra.2008.04.012
[487] B. Mirzaii, ”Bloch–Wigner theorem over rings with many units,” arXiv:0807.2039v2 [matl1.KT] (2009). · Zbl 1279.20060
[488] B. Mirzaii, ”A note on the third cohomology of GL2,” arXiv:0907.0876v1 [rnath.KT] (2009).
[489] B. Mirzaii and W. van der Kallen, ”Homology stability for symplectic groups,” arXiv:math/0110163v1 [math.KT] (2001). · Zbl 0999.19005
[490] B. Mirzaii and W. van der Kallen. ”Homology stability for unitary groups,” Documenta Math., 7, 143–166 (2002). · Zbl 0999.19005
[491] J. Morita, ”On the group structure of rank one K2 of some $ {{\(\backslash\)mathbb{Z}}_S} $ ,” Bull. Soc. Math. Belg., 42, 561–575 (1990). · Zbl 0729.11060
[492] D. W. Morris, ”Bounded generation of SL(n, A),” New York J. Math., 13, 383–421 (2007). · Zbl 1137.20045
[493] K. N. Moss, ”Homology of SL (n, $ \(\backslash\)mathbb{Z}\(\backslash\)left[ {\(\backslash\)frac{1}{p}} \(\backslash\)right] $ ),” Duke Math. J., 47, No. 4, 803–818 (1980). · Zbl 0467.57012 · doi:10.1215/S0012-7094-80-04747-X
[494] T. Mulders, ”Generating the tame and wild kernels by Dennis Stein symbols,” K-Theory, 5, 449–470 (1992). · Zbl 0761.11040 · doi:10.1007/BF01046939
[495] V. K. Murty, ”Bounded and finite generation of arithmetic groups,” in: Number Theory (Halifax. 1994), Providence, RI, (1995), pp. 249–261. · Zbl 0851.11026
[496] H. Nagao, ”On GL2(R[x]),” J. Inst. Polytechn. Osaka City Univ., Ser. A, 10, 117–121 (1959).
[497] K. R. Nagarajan, M. P. Devaasahayam, and T. Soundararajan, ”Products of three triangular matrices over commutative rings,” Linear Algebra Applic., 348, 1–6 (2002). · Zbl 1001.15017 · doi:10.1016/S0024-3795(01)00453-0
[498] M. Newman, Integral Matrices, Academic Press, N. Y. (1972). · Zbl 0254.15009
[499] M. Newman, ”Matrix completion theorems,” Proc. Amer. Math. Soc., 94, 39–45 (1985). · Zbl 0564.15007 · doi:10.1090/S0002-9939-1985-0781052-8
[500] M. Newman, ”Unimodular commutators,” Proc. Amer. Math. Soc., 101, 605–609 (1987). · Zbl 0633.15007 · doi:10.1090/S0002-9939-1987-0911017-6
[501] O. T. O’Meara, ”Finiteness on SL n /TL n over Hasse domains for n 4,” Math. Z., 86, No. 4, 273–284 (1964). · Zbl 0128.25601 · doi:10.1007/BF01110402
[502] O. T. O’Meara, ”On the finite generation of linear groups over Hasse domains,” J. reine angew. Math., 217, 79–108 (1965). · Zbl 0128.25502
[503] O. T. O’Meara, ”The automorphisms of the linear groups over any integral domain,” J. reine angew. Math., 223, 56–100 (1966). · Zbl 0141.02601
[504] O. T. O’Meara, ”The automorphisms of the standard symplectic group over any integral domain,” J. reine angew. Math., 230, 104–138 (1968). · Zbl 0157.06102
[505] O. T. O’Meara, ”The automorphisms of the orthogonal groups and their congruence subgroups over arithmetic domains,” J. reine angew. Math., 238, 169–206 (1969). · Zbl 0186.04302
[506] O. T. O’Meara, ”Group-theoretic characterization of transvections using CDC,” Math. Z., 110, 385–394 (1969). · Zbl 0186.04303 · doi:10.1007/BF01110686
[507] O. T. O’Meara, ”The integral classical groups and their automorphisms,” Proc. Symp. Pure Math., 20, 76–85 (1971). · doi:10.1090/pspum/020/0316590
[508] O. T. O’Meara, ”A general isomorphism theory for linear groups,” J. Algebra, 44, 93–142 (1977). · Zbl 0356.15002 · doi:10.1016/0021-8693(77)90167-3
[509] O. T. O’Meara, ”A survey of the isomorphism theory of the classical groups,” in: Ring Theory and Algebra. III, Dekker, N. Y. (1980), pp. 225–242.
[510] O. T. O’Meara and H. Zassenhaus, ”The automorphisms of the linear congruence groups over Dedekind domains,” J. Number. Theory, 1, 211–221 (1969). · Zbl 0167.29701 · doi:10.1016/0022-314X(69)90040-7
[511] A. A. Panin, ”Intermediate semigroups are groups,” Semigroup Forum (2011). · Zbl 0988.20038
[512] H. Park, ”A realization algorithm for SL2(R[x 1,...x m ]) over the Euclidean domain,” SIAM J. Matrix Anal. Appl., 21, No. 1, 178–184 (1999). · Zbl 0953.15027 · doi:10.1137/S0895479897331096
[513] H. Park and C. Woodburn, ”An algorithmic proof of Suslin’s stability theorem for polynomial rings,” J. Algebra, 178, No. 1, 277–298 (1995). · Zbl 0841.19001 · doi:10.1006/jabr.1995.1349
[514] V. M. Petechuk, ”Isomorphisms between linear groups over division rings,” Canad. J. Math., 45, No. 5, 997–1008 (1993). · Zbl 0797.20039 · doi:10.4153/CJM-1993-055-3
[515] V. M. Petechuk, ”Stability structure of linear group over rings,” Mat. Studii, 16, No. 1, 13–24 (2001). · Zbl 0996.20032
[516] A. Pilkington, ”The E 2(R)-normalized subgroups of GL2(R). I, II,” J. Algebra, 172, No. 2, 584–611 (1995); 177, No. 3, 619–626. · Zbl 0827.20058
[517] E. Plotkin, ”Stability theorems for K-functors for Chevalley groups,” in: Proceeding of the Conference on Non-Assoeiatiue Algebras and Related Topics (Hiroshima 1990), World Sci., London et al. (1991), pp. 203–217.
[518] E. Plotkin, ”On the stability of K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998). · Zbl 0918.20039 · doi:10.1006/jabr.1998.7535
[519] E. Plotkin, M. R. Stein, and N. Vavilov, ”Stability of K-functors modeled on Chevalley groups, revisited,” (2011) to appear.
[520] B. Pollak, ”On the structure of local orthogonal groups,” Amer. J. Math., 88, 763–780 (1966). · Zbl 0145.24701 · doi:10.2307/2373077
[521] B. Pollak, ”Orthogonal groups over $ \(\backslash\)mathbb{R} $ (({\(\pi\)})),” Amer. J. Math., 89, 214–230 (1968). · Zbl 0164.02402 · doi:10.2307/2373433
[522] J. Pomfret and B. R. McDonald, ”Automorphisms of GL n (R), R a local ring,” Trans. Amer. Math. Soc., 173, 379–388 (1972). · Zbl 0254.20033
[523] R. A. Rankin, The Modular Group and Its Subgroups, Lectures at Ramanujan Institute, Madras (1968).
[524] R. A. Rao, ”An elementary transformation of a special unimodular vector to its top coefficient vector,” Proc. Amer. Math. Soc., 93, No. 1, 21–24 (1985). · Zbl 0536.15003 · doi:10.1090/S0002-9939-1985-0766519-0
[525] R. A. Rao, ”The Bass–Quillen conjecture in dimension three but characteristic 2, 3 via a question of A. Suslin,” Invent. Math., 93, 609–618 (1988). · Zbl 0652.13009 · doi:10.1007/BF01410201
[526] R. A. Rao, ”On some actions of stably elementary matrices on alternating matrices,” Preprint TIFR. (1989).
[527] R. A. Rao, ”On completing unimodular polynomial vectors of length three,” Trans. Amer. Math. Soc., 325, No. 1, 231–239 (1991). · Zbl 0726.13005 · doi:10.1090/S0002-9947-1991-0991967-0
[528] R. A. Rao, ”An abelian group structure on orbits of ’unimodular squares’ in dimension 3,” J. Algebra, 210, 216–224 (1998). · Zbl 0917.20040 · doi:10.1006/jabr.1998.7543
[529] R. A. Rao and W. der Kallen, ”Improved stability for SK1 and WNS d of nonsingular affine{\(\cdot\)}algebra,” Astérisque, 85, 411–420 (1994). · Zbl 0832.19002
[530] A. Rapinchuk, ”Congruence subgroup problem for algebraic groups: old and new,” Journées Arithmétiques, 1991 Astérisque, No. 209, 73–84 (1992). · Zbl 0805.20040
[531] I. A. Rapinchuk, ”On linear representations of Chevalley groups over commutative rings,” arXiv:1005.0422v1 [math.GR] (2010). · Zbl 1232.20049
[532] N. S. Rege, ”On certain classical groups over Hasse domains,” Math. Z., 102, 120–157 (1967). · Zbl 0232.20090 · doi:10.1007/BF01112080
[533] U. Rehmann, ”Präsentationen von Chevalleygruppen über k[t],”’ Preprint Univ. Bielefeld (1975).
[534] U. Rehmann, ”Zentrale Erweiterungen der speziellen linearen Gruppe eines Sehiefkörpers,” J. reine angew. Math., 301, 77–104 (1978). · Zbl 0377.20036
[535] U. Rehmann, ”Kommutatoren in GL n (D),” Lecture Notes Math., 778, 117–123 (1980). · doi:10.1007/BFb0095928
[536] U. Rehmann, ”Central extensions of SL2 over division rings and metaplectic problem,” Contemp. Math., 55, No. 2, 561–607 (1986). · doi:10.1090/conm/055.2/1862655
[537] U. Rehmann and C. Soulé, ”Finitely presented groups of matriecs,” Lecture Notes Math., 551, 164–169 (1976). · doi:10.1007/BFb0079999
[538] U. Relnnann and U. Stuhler, ”On K2 of finite dimensional division algebras over arithmetical fields,” Invent. Math., 50, 75–90 (1975).
[539] I. Reiner, ”A new type of automorpliism ofthe general linear group over a. ring,” Ann. Math., 66, 461–466 (1957). · Zbl 0079.03901 · doi:10.2307/1969903
[540] C. Riehin, ”The structure of symplectic group over a valuation ring,” Amer. J. Math., 88, 106–128 (1966). · Zbl 0161.02302 · doi:10.2307/2373049
[541] C. R. Riehm, ”Orthogonal groups over the integers of a local field. I, II,” Amer. J. Math., 88, 763–780 (1966); 89, 549–577 (1967). · Zbl 0146.04303
[542] M. Roitman, ”Completing unimodular rows to invertible matrices,” J. Algebra, 49, 206–211 (1977). · Zbl 0367.15017 · doi:10.1016/0021-8693(77)90280-0
[543] M. Roitman, ”On uniniodular rows,” Proc. Amer. Math. Soc., 95, 184–188 (1985). · Zbl 0617.16012 · doi:10.1090/S0002-9939-1985-0801320-0
[544] L. Rovven, Ring Theory (2011).
[545] A. Sasane, ”Stable ranks of Banach algebras of operator-valued analytic functions.” Compl. Anal. Operator Theory, 3, 323–330 (2009). · Zbl 1221.30123 · doi:10.1007/s11785-008-0046-1
[546] J.-P. Serre, ”Amalgames et points fixes,” Lecture Notes Math., 372, 633–640 (1974). · Zbl 0308.20026 · doi:10.1007/978-3-662-21571-5_67
[547] J. -P. Serre, Trees, Springer-Verlag, Berlin et al. (1980).
[548] Y. Shalom, ”Bounded generation and Kazhdan property (T),” Inst. Hdutes Études Sei. Publ. Math., 90, 145–168 (1999). · Zbl 0980.22017 · doi:10.1007/BF02698832
[549] Y. Shalom, ”Explicit Kazhdan constants for representations of seinisirnple and arithrnetic groups,” Ann. Inst. Fourier (Grenoble), 50, No. 3, 833–863 (2000). · Zbl 0966.22004 · doi:10.5802/aif.1775
[550] Y. Shalom, ”The algebraisation of Kazhdan property (T),” in: International Congress of Mathematicians, 11, 1283–1310 (2006). · Zbl 1109.22003
[551] R. W. Sharpe, ”On the structure of the unitary Steinberg group,” Ann. Math., 96, No. 3, 444–479 (1972). · Zbl 0251.20047 · doi:10.2307/1970820
[552] R. W. Sharpe, ”On the structure of the Steinberg group St({\(\Lambda\)}),” J. Algebra, 68, 453–467 (1981). · Zbl 0465.18006 · doi:10.1016/0021-8693(81)90274-X
[553] J. R. Silvester, ”On the K2 of the free associative algebra,” J. Algebra, 26, 35–56 (1973). · Zbl 0249.18023
[554] J. R. Silvester, ”A presentation ofthe GL n of a semi-local ring,” Lecture Notes Math., 966, 244–260 (1982). · doi:10.1007/BFb0062178
[555] A. Sivatsky and A. Stepanov, ”On the word length of cornrnutators in GL n (R).” K-theory, 17, 295–302 (1999). · Zbl 0935.20037 · doi:10.1023/A:1007730801851
[556] Th. Skolem, Diophantisehe Gleichungen, Springer, Berlin (1938).
[557] R. E. Solami, ”The automorphisrns of certain subgroups of PGL n (V),” Ill. J. Math., 16, 330–348 (1972).
[558] C. Soulé, ”The cohomology of SL3 $ \(\backslash\)left( \(\backslash\)mathbb{Z} \(\backslash\)right) $ ,” Topology, 17, 1–22 (1978). · Zbl 0382.57026 · doi:10.1016/0040-9383(78)90009-5
[559] C. Soulé, ”Presentation finie des groupes de Chevalley a coefficients dans un anneau,” Publ. Math. Univ. Paris. VII, 147–155 (1978).
[560] C. Soulé, ”Chevalley groups over polynomial rings,” London Math. Soc. Lect. Notes, 36, 359–367 (1979).
[561] C. Soulé, ”An introduction to arithmetic groups,” in: Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin et al. (2007), pp. 247–276. · Zbl 1193.11036
[562] S. Splitthoff, ”Finite presentability of Steinberg groups and related Chevalley groups,” Contemp. Math., 55, II, 635–687 (1986). · Zbl 0596.20034
[563] J. T. Stafford, ”Stable structure of noncommutative Noetherian rings,” J. Algebra, 47, 244–267 (1977). · Zbl 0391.16009 · doi:10.1016/0021-8693(77)90224-1
[564] J. T. Stafford, ”On the stable range of right Noetherian rings,” Bull. London Math. Soc., 13, 39–41 (1981). · doi:10.1112/blms/13.1.39
[565] J. T. Stafford, ”Absolute stable rank and quadratic forms over nonconmiutative rings,” K-Theory, 4, 121–130 (1990). · Zbl 0719.16016 · doi:10.1007/BF00533152
[566] A. Stavrova, ”Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings,” Algebra Coll., 16, No. 4, 631–648 (2009). · Zbl 1187.20060
[567] M. R. Stein, ”Relativising functors on rings and algebraic K-theory,” J. Algebra, 19, No. 1, 140–152 (1971). · Zbl 0219.18007 · doi:10.1016/0021-8693(71)90123-2
[568] M. R. Stein, ”Generators relations and coverings of Chevalley groups over comrnutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971). · Zbl 0246.20034 · doi:10.2307/2373742
[569] M. R. Stein, ”Stability theorems for K1, K2 and related functors modeled on Chevalley groups,” Japan J. Math., 4, No. 1, 77–108 (1978). · Zbl 0403.18010
[570] M. R. Stein and R. K. Dennis, ”K2 of radical ideals and serni-local rings revisited,” Lecture Notes Math., 342, 281–303 (1972).
[571] R. Steinberg, ”Générateurs, relations et revêtements des groupes algébriques,” in: Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962), Guthier-Villar, Paris (1962), pp. 113–127.
[572] R. Steinberg, ”Some consequences of elementary relations of SL n ,” Contemp. Math., 45, 335–350 (1985). · Zbl 0579.20038 · doi:10.1090/conm/045/822247
[573] A. Stepanov, ”Universal localization in algebraic groups,” http://alexe:i.stepanov.spb.ru/\(\sim\)publicat.html (2010) to appear.
[574] A. Stepanov and N. Vavilov, ”Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000). · Zbl 0944.20031 · doi:10.1023/A:1007853629389
[575] A. Stepanov and N. Yavilov, ”On the length of commutators in Chevalley groups,” Israel Math. J., 1–20 (2011).
[576] U. Stuliler, ”Zur Frage der endlichen Präsentierbarkeit gewisser aritlimetiseher Gruppen im Funktionenkörperfall,” Math. Ann., 224, 217–232 (1976). · doi:10.1007/BF01459846
[577] U. Stuhler, ”Homological properties of certain arithmetic groups in the function Held case,” Invent. Math., 57, 263–281 (1980). · Zbl 0432.14026 · doi:10.1007/BF01418929
[578] A. A. Suslin, ”Stability in algebraic K-theory,” Lecture Notes Math., 966, 304–333 (1982). · Zbl 0498.18008 · doi:10.1007/BFb0062181
[579] A. A. Suslin, ”Mennicke symbols and their applications in the K-theory of fields,” Lecture Notes Math., 966, 334–356 (1982). · Zbl 0502.18004 · doi:10.1007/BFb0062182
[580] A. A. Suslin, ”Homology of GL n , characteristic classes and Milnor’s K-theory,” Lecture Notes Math., 1046, 357–384 (1984). · Zbl 0591.18006 · doi:10.1007/BFb0072031
[581] K. Suzuki, ”On the autornorphisms of Chevalley groups over p-adic integer rings,” Kumamato J. Sci., Math., 16, No. 1, 39–47 (1984). · Zbl 0628.20040
[582] R. G. Swan, ”Generators and relations for certain special linear groups,” Bull. Amer. Math. Soc., 74, 576–581 (1968). · Zbl 0221.20061 · doi:10.1090/S0002-9904-1968-12016-6
[583] R. G. Swan, ”Generators and relations for certain special linear groups,” Adv. Math., 6, 1–77 (1971). · Zbl 0221.20060 · doi:10.1016/0001-8708(71)90027-2
[584] R. G. Swan and L. N. Vaserstein, ”On the absolute stable range of rings of continuous functions,” Contemp. Math., 55, No. 11, 689–692 (1986). · Zbl 0592.18006 · doi:10.1090/conm/055.2/1862659
[585] G. Taddei, ”Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau,” C. R. Acad. Sci Paris, Sér I, 295, No. 2, 47–50 (1982). · Zbl 0504.20031
[586] G. Taddei, ”Norrnalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55 Part II, 693–710 (1986).
[587] Tang Guoping, ”Hermitian groups and K-theory,” K-Theory, 13, No. 3, 209–267 (1998). · Zbl 0899.19003 · doi:10.1023/A:1007725531627
[588] Tang Xiangpu, ”An Jianbei. The structure of symplectic groups over semi-local rings,” Acta Math. Sinica, New Series, 1, 1–15 (1985). · Zbl 0581.20046
[589] O. l. Tavgen’, ”Bounded generation of normal and twisted Chevalley groups over the rings of S-integers,” Contemp. Math., 131, No. 1, 409–421 (1992). · Zbl 0778.20020
[590] J. Tits, ”Homomorphismes et automorphismes ”abstraits” de groupes algebriques et arithmetiques,” in: International Congress of Mathematics (Nice, 1970), Gauthier-Villars, Paris (1971), pp. 349–355.
[591] J. Tits, ”Homomorphisms ”abstraits” de groupes de Lie,” in: Convegno di Gruppi e Loro Rappresentazioni, INDAM (Roma, 1972). Academic Press, London (1974), pp. 479–499.
[592] J. Tits, ”Systemes generateurs de groupes de eongruenees,” C. R. Acad. Sci. Paris, Sér. A, 283, 693–695 (1976). · Zbl 0381.14005
[593] M. F. Trittler, ”Die Normalteiler symplektischer Gruppen iiber Bewertungsringen mit einer Restklassenkörper-Charakteristik 2,” Manuscripta Math., 103, 117–134 (2000). · Zbl 0991.20034 · doi:10.1007/s002290070033
[594] R. Tuler, ”Subgroups of SL2(Int) generated by elementary rnatrices,” Proc. Ray. Soc. Edinburgh, Ser. A, 88, No. 1–2, 43–47 (1981). · Zbl 0455.20036
[595] L. N. Vaserstein, ”On the normal subgroups of the GL n of a ring,” Springer Lecture Notes Math., 854, 454–465 (1981). · Zbl 0464.20030
[596] L. N. Vaserstein, ”Bass’s first stable range condition,” J. Pure Appl. Algebra, 34, No. 2–3, 319–330 (1984). · Zbl 0547.16017 · doi:10.1016/0022-4049(84)90044-6
[597] L. N. Vaserstein, ”Classical groups over rings,” Canad. Math. Soc. Conf. Proc., 4, 131–140 (1984). · Zbl 0577.20033
[598] L. N. Vaserstein, ”Normal subgroups of the general linear groups over von Neumann rings,” Proc. Amer. Math. Soc., 96, No. 2, 209–214 (1986). · Zbl 0594.16007 · doi:10.1090/S0002-9939-1986-0818445-7
[599] L. N. Vaserstein, ”Normal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 41, 99–112 (1986). · Zbl 0589.20030 · doi:10.1016/0022-4049(86)90104-0
[600] L. N. Vaserstein, ”An answer to the question of M. Newman on rnatrix cornpletion,” Proc. Amer. Math. Soc., 97, No. 2, 189–196 (1986). · Zbl 0601.15011 · doi:10.1090/S0002-9939-1986-0835863-1
[601] L. N. Vaserstein, ”The subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 99, 425–431 (1986). · Zbl 0601.20046 · doi:10.1017/S0305004100064367
[602] L. N. Vaserstein, ”Operations on orbits of unirnorlular vectors,” J. Algebra, 100, 456–461 (1986). · Zbl 0592.20053 · doi:10.1016/0021-8693(86)90088-8
[603] L. N. Vaserstein, ”On normal subgroups of Chevalley groups over eommutative ririgs,” Tôhoku Math. J., 36, No. 5, 219–230 (1986). · doi:10.2748/tmj/1178228489
[604] L. N. Vaserstein, ”Computation of K1 via Mennicke symbols,” Comm. Algebra, 15, 611–656 (1987). · Zbl 0614.16018 · doi:10.1080/00927878708823434
[605] L. N. Vaserstein, ”Subnormal subgroups of the general linear groups over Banach algebras,” J. Pure Appl. Algebra, 52, 187–195 (1988). · Zbl 0653.20050 · doi:10.1016/0022-4049(88)90146-6
[606] L. N. Vaserstein, ”Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., 110, No. 5, 955–973 (1988). · Zbl 0654.20052 · doi:10.2307/2374699
[607] L. N. Vaserstein, ”Reduction of a matrix depending on parameters to a diagonal form by addition operators,” Proc. Amer. Math. Soc., 103, No. 3, 741–746 (1988). · Zbl 0657.55005 · doi:10.1090/S0002-9939-1988-0947649-X
[608] L. N. Vaserstein, ”Normal subgroups of classical groups over rings and gauge groups,” Contemp. Math., 83, 451–459 (1989). · Zbl 0676.20025 · doi:10.1090/conm/083/991990
[609] L. N. Vaserstein, ”Norrnal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989). · Zbl 0669.20040 · doi:10.1007/BF00535050
[610] L. N. Vaserstein, ”Linear algebra and algebraic K-theory,” Contemp. Math., 82, 191–197 (1989). · Zbl 0669.15001 · doi:10.1090/conm/082/982288
[611] L. N. Vaserstein, ”The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990). · Zbl 0711.20030 · doi:10.1017/S0305004100069097
[612] L. N. Vaserstein, ”On normal subgroups of GL2 over rings with many units,” Compositio Math., 74, No. 2, 157–164 (1990). · Zbl 0697.20040
[613] L. N. Vaserstein, ”On the VVhitehead determinant for semi-local rings,” J. Algebra, 283, 690–699 (2005). · Zbl 1059.19002
[614] L. N. Vaserstein, ”Polynomial parametrization for the solution of Diophantine equations and arithmetic groups,” Ann. Math., 171, No. 2, 979–1009 (2010). · Zbl 1221.11082 · doi:10.4007/annals.2010.171.979
[615] L. N. Vaserstein and B. A. Magurn, ”Prestabilization for K1 of Banach algebras,” Linear Algebra Appl., 95, 69–96 (1987). · Zbl 0629.20021 · doi:10.1016/0024-3795(87)90027-9
[616] L. N. Vaserstein and E. Wheland, ”Factorization of invertible matrices over rings of stable rank one,” J. Austral Math. Soc. Ser. A, 48, No. 3, 455–460 (1990). · Zbl 0705.15004 · doi:10.1017/S1446788700029980
[617] L. N. Vaserstein and E. Wheland, ”Commutators and companion matrices over rings of stable rank 1,” Linear Algebra Appl., 142, 263–277 (1990). · Zbl 0713.15003 · doi:10.1016/0024-3795(90)90270-M
[618] L. N. Vascrstein and You Hong, ”Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995). · Zbl 0843.20037 · doi:10.1016/0022-4049(94)00144-8
[619] N. Vavilov, ”A note on the subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 107, No. 2, 193–196 (1990). · Zbl 0701.20025 · doi:10.1017/S030500410006847X
[620] N Vavilov, ”Structure of Cheyalley groups over commutative rings,” in: Proceedings of the Conference on Non-Associotibe Algebros ond Related Topics (Hiroshima – 1990), World Sci., London et al. (1991), pp. 219–335. · Zbl 0799.20042
[621] N. Vavilov, ”Intermediate subgroups in Chevalley groups,” in: Proceedings of the Conference on Groups of Lie Type and Their Geometries (Como – 1993), Cambridge Univ. Press (1995), pp. 233–280. · Zbl 0879.20020
[622] N. Vayilov, ”A third look at weight diagrams,” Rendiconti del Sem. Mat. Univ. Padova, 204, No. 1, 201–250 (2000). · Zbl 1016.20029
[623] N. Vavilov, ”An A3-proof of structure theorems for Chevalley groups of types E6 and E7,” Intern. J. Algebra Comput., 17, No. 5–6, 1–16 (2007). · Zbl 1184.20031 · doi:10.1142/S0218196707003330
[624] N. Vavilov and E. Plotkin, ”Chevalley groups over commutative rings. l. Elementary calculations,” Acta Applicandae Math., 45, No. 1, 73–113 (1996). · Zbl 0861.20044 · doi:10.1007/BF00047884
[625] F. D. Veldkamp, ”Projective planes over rings of stable rank 2,” Geom. Dedic., 11, 285–308 (1981). · Zbl 0468.51001
[626] F. D. Veldkamp, ”Projective geometry over finite rings,” Quaderni del Semin. di Gcorn. Combinat. Univ. Rama I ”La Snpienza”, No. 92, 1–39 (1989).
[627] K. Vogtmann, ”Spherical posets and homology stability for O n,n ” Topology, 20, No. 2, 119–132 (1981). · Zbl 0455.20031 · doi:10.1016/0040-9383(81)90032-X
[628] T. Vorst, ”The general linear group of polynomial rings over regular rings,” Comm. Algebra, 9, 499–509 (1981). · Zbl 0453.20042 · doi:10.1080/00927878108822596
[629] J. B. Wagoner, ”On K2 of the Laurent polynomial ring,” Amer. J. Math., 93, 123–138 (1971). · Zbl 0217.34802 · doi:10.2307/2373452
[630] J. B. Wagoner, ”Stability for homology of the general linear group of a local ring,” Topology, 15, 417–423 (1976). · Zbl 0362.18016 · doi:10.1016/0040-9383(76)90035-5
[631] Zhexian Wan, ”On the automorphisms of linear groups over a noncommutative Euclidean ring of characteristic 2,” Sci. Record, 1, No. 1, 5–8 (1957). · Zbl 0082.02701
[632] Zhexian Wan, ”On the automorphisms of linear groups over a noncommutative principal ideal domain of characteristic 2,” Sci. Sinica, 7, 885–933 (1958). · Zbl 0085.25702
[633] Zhexian Wan, ”Some recent progress on classical groups in China,” Contemp. Math., 82, 221–230 (1989). · Zbl 0666.20021 · doi:10.1090/conm/082/982290
[634] Zhexian Wan and Hongshuo Ren, ”Automorphisms of two-dimensional linear groups over local rings of characteristic 2,” Chinese Ann. Math., 4, No. 4, 419–434 (1983). · Zbl 0562.20022
[635] Zhexian Wan and Xiaolong Wu, ”On the second commutator subgroup of PGL2(Int),” Math. Rep. Acad. Sci. Canada, 11, No. 6, 303–308 (1980). · Zbl 0465.20045
[636] Chunsen Wang, ”Automorphisms of linear groups over a class of rings,” Chinese Ann. Math., 4, No. 2, 263–269 (1983). · Zbl 0513.20031
[637] Luqun Wang, ”On the standard form of normal subgroups of linear groups over rings,” Chinese Ann. Math., 5, No. 2, 229–238 (1984). · Zbl 0543.20028
[638] Luqun Wang and Yongzheng Zhang, ”GL2 over full rings,” Chinese Ann. Math., 8, No. 4, 434–439 (1987). · Zbl 0638.20029
[639] Renfa. Wang and Hong You, ”The structure of symplectic groups over semi-local rings,” Chinese Ann. Math. Ser. A, 5, 33–40 (1984) (in Chinese). · Zbl 0573.20047
[640] W. P. Wardlaw, ”Defining relations for certain integrally parametrized Chevalley groups,” Pacif. J. Math., 40, 235–250 (1972). · Zbl 0252.22017 · doi:10.2140/pjm.1972.40.235
[641] W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag, N.Y. et al. (1979). · Zbl 0442.14017
[642] W. C. Waterhouse, ”Automorphisms of GL n (R),” Proc. Amer. Math. Soc., 79, 347–351 (1980). · Zbl 0442.20027
[643] W. C. Waterhouse, ”Automorphisms of quotients of {\(\Pi\)} GL(n i ),” Pacif. J. Math., 102, 221–233 (1982). · Zbl 0504.20028 · doi:10.2140/pjm.1982.102.221
[644] W. C. Waterhouse, ”Automorphisms of det(X ij ): the group scheme approach,” Adv. Math., 65, No. 2, 171–203 (1987). · Zbl 0651.14028 · doi:10.1016/0001-8708(87)90021-1
[645] C. Weibel, ”Mennicke-type symbols for relative K2,” Lecture Notes Math., 1046, 451–464 (1984). · doi:10.1007/BFb0072036
[646] B. Weisfeiler, ”On abstract hoinorphisms of anisotropic algebraic groups over real closed fields,” J. Algebra, 60, 485–519 (1979). · Zbl 0417.20041 · doi:10.1016/0021-8693(79)90095-4
[647] B. Weisfeiler, ”Monomorphisms between subgroups of groups of type G2,” J. Algebra, 68, 306–334 (1981). · Zbl 0453.20030 · doi:10.1016/0021-8693(81)90267-2
[648] B. Weisfeiler, ”Abstract isomorphisms of simple algebraic groups split by quadratic; extension,” J. Algebra, 68, 335–368 (1981). · Zbl 0456.20023 · doi:10.1016/0021-8693(81)90268-4
[649] B. Weisfeiler, ”Abstract homomorphisms of big subgroups of algebraic groups,” in: Topics in the Theory of Algebraic Groups, Notre Dame Math. Lectures (1982), pp. 135–181. · Zbl 0567.14025
[650] M. Wendt, ”On fibre sequence in motivic homotopy theory,” Thesis Univ. Leipzig (2007). · Zbl 1149.14001
[651] M. Wendt, ” $ {{\(\backslash\)mathbb{A}}\^1} $ -homotopy of Chevalley groups,” J. K-Theory, 5, No. 2, 245–287 (2010). · Zbl 1200.14039 · doi:10.1017/is010001014jkt096
[652] K. Weston, ”On nilpotent class 2 groups and the Steinberg groups St(3, R),” Arch. Math., 45, 207–210 (1985). · Zbl 0587.20029 · doi:10.1007/BF01275570
[653] J. S. Wilson, ”The normal and subnormal structure of general linear groups,” Proc. Cambridge Philos. Soc., 71, 163–177 (1972). · Zbl 0237.20044 · doi:10.1017/S0305004100050416
[654] D. Witte, ”Products of similar matrices,” Proc. Amer. Math. Soc., 126, No. 4, 1005–1015 (1998). · Zbl 0893.20033 · doi:10.1090/S0002-9939-98-04368-8
[655] D. Wright, ”The amalgamated free product structure of GL2 (k[x 1,...,x n ]),” Bull. Amer. Math. Soc., 82, No. 5, 724–726 (1976). · Zbl 0358.15009 · doi:10.1090/S0002-9904-1976-14132-8
[656] D. Wright, ”The amalgamated free product structure of GL2(k[X 1,...,X n ]) and the weak Jacobian theorem for two variables,” J. Pure Appl. Algebra, 12, No. 3, 235–251 (1978). · Zbl 0387.20039 · doi:10.1016/0022-4049(87)90004-1
[657] S. Yagunov, ”On the homology of GL n and the higher pre-Bloch groups,” Canad. J. Math., 52, No. 6, 1310–1338 (2000). · Zbl 0970.19001 · doi:10.4153/CJM-2000-054-9
[658] C. R. Yohe, ”Triangular and diagonal forms for rnatrices over coinrnutative noetherian rings,” J. Algebra, 6, 335–368 (1967). · Zbl 0152.02701 · doi:10.1016/0021-8693(67)90088-9
[659] Hong You, ”Prestabilization for K1U of {\(\Lambda\)}-2-fold rings,” Chinese Sci. Bull., 37, No. 5, 357–361 (1992). · Zbl 0780.19002
[660] Hong You, ”Stabilization of unitary groups over polynomial rings,” Chinese Ann. Math., Ser. B, 16, No. 2, 177–190 (1995). · Zbl 0828.19001
[661] Hong You, ”Subgroups of classical groups normalised by relative elementary groups,” J. Pure Appl. Algebra, 1–16 (2011) (to appear).
[662] Hong You and Sheng Chen, ”Subrings in quadratic fields which are not universal for GE2,” Quarl. J. Math., 54, 233–241 (2003). · Zbl 1040.11084
[663] Hong You and Shengkui Ye, ”Prestability for quadratic K1 of {\(\Lambda\)}-1-fold stable rings,” J. Algebra, 319, 2072–2081 (2008). · Zbl 1149.19004 · doi:10.1016/j.jalgebra.2007.11.007
[664] D. C. Youla and P. F. Pickel, ”The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices,” IEEE Trans. Circuits Systems, 31, 513–517 (1984). · Zbl 0553.13003 · doi:10.1109/TCS.1984.1085545
[665] Jiangguo Zha., ”An embedding theorem between special linear groups over any fields,” Chinese Ann. Math., Ser. B, 16, No. 4, 477–486 (1995). · Zbl 0839.20058
[666] Jiangguo Zha, ”Hornornorphisrns between the Chevalley groups over any field of eliaraeeristic zero,” Comm. Algebra, 24, No. 2, 659–703 (1996). · Zbl 0877.13014 · doi:10.1080/00927879608825590
[667] Jiangguo Zha, ”Determination of hoinoinorphisins between linear groups of the saine degree over division rings,” J. London Math. Soc., 53, No. 3, 479–488 (1996). · Zbl 0858.20038 · doi:10.1112/jlms/53.3.479
[668] Haiquan Zhang and Luqun Wang, ”Normal subgroups of syrnplectic groups over {\(\Phi\)}-surjective rings,” Acta Math. Sinica, 25, 270–278 (1985) (in Chinese). · Zbl 0605.20044
[669] Yongzheng Zhang, ”The structure of two-dimentional linear groups over semi-local rings,” Kexue Tongbao, 26, No. 23, 1469 (1981) (in Chinese).
[670] Zuhong Zhang, ”Lower K-theory of unitary groups,” Dolctorarbeit Univ. Belfast (2007). · Zbl 1137.20047
[671] Zuhong Zhang, ”Stable sandwich classification theorem for classical-like groups,” Math. Proc. Cambridge Phil. Soc., 143, No. 3, 607–619 (2007). · Zbl 1137.20047
[672] Zuhong Zhang, ”Subnormal structure of nonstable unitary groups over rings,” J. Pure Appl. Algebra, 214, 622–628 (2010). · Zbl 1192.20037
[673] Fang Zhou and Li Li, ”A theorern on the generators of the general linear group over a local ring R,” Dongbei Shida Xuebao, No. 2, 123–127 (1983) (in Chinese). · Zbl 0575.20041
[674] R. Zirnniert, ”Zur SL2 der ganzen Zahlen eines irnaginarquadratischen Zahlkörpers,” Inv. Math., 19, 73–81 (1973). · Zbl 0254.10019 · doi:10.1007/BF01418852
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.