×

Compliant mechanism design based on the level set and arbitrary Lagrangian Eulerian methods. (English) Zbl 1274.74254

Summary: This paper deals with continuum-based compliant mechanism design. In topology optimization, filtering techniques are used for the regularization of the design space. In the density design representation, convolution-type filters inherently produce gray transition regions between solids and voids. In order to reduce the gray transition regions, projection schemes have recently been proposed. Binarization, however, still leads to one-node connected hinges in compliant mechanism design. In this paper, we propose a method that incorporates the level set and arbitrary Lagrangian Eulerian methods so that the gray transition regions are completely excluded and one-node connected hinges are not formed.

MSC:

74P05 Compliance or weight optimization in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set al met alhod. J Comput Phys 194(1):363–393. doi: 10.1016/j.jcp.2003.09.032 · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[2] Allaire G, De Gournay F, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set al met alhod. Control Cybern 34(1):59–80 · Zbl 1167.49324
[3] Ananthasuresh GK, Kota S, Kikuchi N (1994) Strategies for systematic synthesis of compliant MEMS. In: Proceedings of 1994 ASME winter annual meet aling, symposium on MEMS, dynamics systems and control, vol 55-2. ASME, Chicago, pp 677–686
[4] Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202 · doi:10.1007/BF01650949
[5] Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization met alhod. Comput Met alhods Appl Mech Eng 71(2):197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[6] Bendsøe MP, Sigmund O (2003) Topology optimization theory, met alhods and applications, 2nd edn. Springer, Berlin
[7] Bruns ET, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Met alhods Appl Mech Eng 190(26–27):3443–3459. doi: 10.1016/S0045-7825(00)00278-4 · Zbl 1014.74057 · doi:10.1016/S0045-7825(00)00278-4
[8] Guest JK (2009) Topology optimization with multiple phase projection. Comput Met alhods Appl Mech Eng 199(1–4):123–135. doi: 10.1016/j.cma.2009.09.023 · Zbl 1231.74360 · doi:10.1016/j.cma.2009.09.023
[9] Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Met alhods Eng 61(2):238–254. doi: 10.1002/nme.1064 · Zbl 1079.74599 · doi:10.1002/nme.1064
[10] Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44(1):19–24. doi: 10.1007/s00158-010-0562-2 · Zbl 1274.74349 · doi:10.1007/s00158-010-0562-2
[11] Lazarov B, Sigmund O (2009) Sensitivity filters in topology optimization as a solution to helmholtz type differential equation. In: 8th World congress on structural and multidisciplinary optimization. ISSMO, Lisbon
[12] Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Met alhods Eng 86(6):765–781. doi: 10.1002/nme.3072 · Zbl 1235.74258 · doi:10.1002/nme.3072
[13] Luo Z, Tong L (2008) A level set al met alhod for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Met alhods Eng 76(6):862–892. doi: 10.1002/nme.2352 · Zbl 1195.74134 · doi:10.1002/nme.2352
[14] Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a paramet alerization level set al met alhod. J Comput Phys 227(1):680–705. doi: 10.1016/j.jcp.2007.08.011 · Zbl 1127.65043 · doi:10.1016/j.jcp.2007.08.011
[15] Nishiwaki S, Min S, Yoo J, Kikuchi N (2001) Optimal structural design considering flexibility. Comput Met alhods Appl Mech Eng 190(34):4457–4504 · doi:10.1016/S0045-7825(00)00329-7
[16] Osher S, Set alhian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78(1):12–49 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[17] Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Met alhods Eng 50(12):2683–2705, doi: 10.1002/nme.148 · Zbl 0988.74055 · doi:10.1002/nme.148
[18] Saxena A (2008) A material-mask overlay strategy for continuum topology optimization of compliant mechanisms using honeycomb discret alization. J Mech Des 130(8):082,304. doi: 10.1115/1.2936891 · doi:10.1115/1.2936891
[19] Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Des Struct Mach 25(4):493–524 · doi:10.1080/08905459708945415
[20] Sigmund O (2007) Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization 33(4):401–424. doi: 10.1007/s00158-006-0087-x · doi:10.1007/s00158-006-0087-x
[21] Talischi C, Paulino G, Le C (2009) Honeycomb wachspress finite elements for structural topology optimization. Struct Multidisc Optim 37(6):569–583 · Zbl 1274.74452 · doi:10.1007/s00158-008-0261-4
[22] Wang F, Lazarov BS, Sigmund O (2011) On projection met alhods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784. doi: 10.1007/s00158-010-0602-y · Zbl 1274.74409 · doi:10.1007/s00158-010-0602-y
[23] Wang MY, Wang X, Guo D (2003) A level set al met alhod for structural topology optimization. Comput Met alhods Appl Mech Eng 192(1–2):227–246 · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[24] Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidisc Optim 41(4):495–505. doi: 10.1007/s00158-009-0452-7 · Zbl 1274.74419 · doi:10.1007/s00158-009-0452-7
[25] Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010a) A structural optimization met alhod based on the level set al met alhod using a new geomet alry-based re-initialization scheme. Int J Numer Met alhods Eng 83(12):1580–1624. doi: 10.1002/nme.2874 · Zbl 1202.74130 · doi:10.1002/nme.2874
[26] Yamasaki S, Nomura T, Kawamoto A, Sato K, Izui K, Nishiwaki S (2010b) A level set al based topology optimization met alhod using the discret alized signed distance function as the design variables. Struct Multidisc Optim 41(5):685–698. doi: 10.1007/s00158-009-0453-6 · Zbl 1274.74420 · doi:10.1007/s00158-009-0453-6
[27] Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set al-based topology optimization met alhod target aling metallic waveguide design problems. Int J Numer Met alhods Eng 87(9):844–868. doi: 10.1002/nme.3135 · Zbl 1242.78042 · doi:10.1002/nme.3135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.