×

Honeycomb Wachspress finite elements for structural topology optimization. (English) Zbl 1274.74452

Summary: Traditionally, standard Lagrangian-type finite elements, such as linear quads and triangles, have been the elements of choice in the field of topology optimization. However, finite element meshes with these conventional elements exhibit the well-known “checkerboard” pathology in the iterative solution of topology optimization problems. A feasible alternative to eliminate such long-standing problem consists of using hexagonal (honeycomb) elements with Wachspress-type shape functions. The features of the hexagonal mesh include two-node connections (i.e. two elements are either not connected or connected by two nodes), and three edge-based symmetry lines per element. In contrast, quads can display one-node connections, which can lead to checkerboard; and only have two edge-based symmetry lines. In addition, Wachspress rational shape functions satisfy the partition of unity condition and lead to conforming finite element approximations. We explore the Wachspress-type hexagonal elements and present their implementation using three approaches for topology optimization: element-based, continuous approximation of material distribution, and minimum length-scale through projection functions. Examples are presented that demonstrate the advantages of the proposed element in achieving checkerboard-free solutions and avoiding spurious fine-scale patterns from the design optimization process.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
Full Text: DOI

References:

[1] Ambrosio L, Buttazzo G (1993) An optimal design problem using perimeter penalization. Calc Var Partial Differ Equ 1:55–69 · Zbl 0794.49040 · doi:10.1007/BF02163264
[2] Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 · doi:10.1007/BF01650949
[3] Bendsøe MP, Kikuchi N (1988) Generating optimal topology in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[4] Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654 · Zbl 0957.74037 · doi:10.1007/s004190050248
[5] Bendsøe MP, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer Verlag, New York
[6] Borrvall T, Petersson J (2001a) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229 · Zbl 1022.74036 · doi:10.1016/S0045-7825(01)00216-X
[7] Borrvall T, Petersson J (2001b) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190:4911–4928 · Zbl 1022.74035 · doi:10.1016/S0045-7825(00)00356-X
[8] Bruns TE (2005) A re-evaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Struct Multidisc Optim 30:428–436 · doi:10.1007/s00158-005-0537-x
[9] Carbonari RC, Silva ECN, Paulino GH (2007a) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng (in press)
[10] Carbonari RC, Silva ECN, Paulino GH (2007b) Topology optimization design of functioanlly graded bimorph-type piezoelectric actuators. Smart Mater Struct 16(6):2605–2620 · doi:10.1088/0964-1726/16/6/065
[11] Chavey D (1989) Tilings by regular polygons 2. A catalog of Tilings. Comput Math Appl 17(1–3):147–165 · Zbl 0704.05010 · doi:10.1016/0898-1221(89)90156-9
[12] Cook RD, Malkus DS, Plesha ME (2002) Concepts and applications of finite element analysis, 4th. edn. Wiley, New York
[13] Costa JCA, Alves MK (2003) Layout optimization with h-adaptivity of structures. Int J Numer Methods Eng 58(1): 83–102 · Zbl 1032.74622 · doi:10.1002/nme.759
[14] Dalton GR (1985) Automatic indexed calculation of Wachspress’ rational finite element functions. Comput Math Appl 11(6):621–623 · Zbl 0585.65005 · doi:10.1016/0898-1221(85)90044-6
[15] Dasgupta G (2003) Interpolants within convex polygons: Wachspress’ shape functions. J Aerosp Eng 16(1):1–8 · doi:10.1061/(ASCE)0893-1321(2003)16:1(1)
[16] Diaz A, Benard A (2003) Designing materials with prescribed elastic properties using polygonal cells. Int J Numer Methods Eng 57(3):301–314 · Zbl 1062.74521 · doi:10.1002/nme.677
[17] Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45 · doi:10.1007/BF01743693
[18] Gout JL (1985) Rational Wachspress-type finite elements on regular hexagons. IMA J Numer Anal 5(1):59–77 · Zbl 0578.65113 · doi:10.1093/imanum/5.1.59
[19] Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254 · Zbl 1079.74599 · doi:10.1002/nme.1064
[20] Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11:1–12 · doi:10.1007/BF01279647
[21] Jang G, Jeong H, Kim Y, Sheen D, Park C, Kim M (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57: 1717–1735 · Zbl 1062.74590 · doi:10.1002/nme.738
[22] Jang G, Lee S, Kim Y, Sheen D (2005) Topology optimization using non-conforming finite elements: three-dimensional case. Int J Numer Methods Eng 63:859–875. · Zbl 1084.74039 · doi:10.1002/nme.1302
[23] Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226 · Zbl 0861.73072 · doi:10.1016/0045-7825(95)00928-0
[24] Kim J, Paulino GH (2002) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech Trans ASME 69(4):502–514 · Zbl 1110.74509 · doi:10.1115/1.1467094
[25] Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems. Commun Pure Appl Math 39, Part I: 1–25, Part II: 139–182, Part III: 353–377
[26] Lewinski T, Zhou M, Rozvany GIN (1994) Extended exact least-weight truss layouts–part II: unsymmetric cantilevers. Int J Mech Sci 36:399–419 · doi:10.1016/0020-7403(94)90044-2
[27] Lyness JN, Monegato G (1977) Quadrature rules for regions having regular hexagonal symmetry. SIAM J Numer Anal 14(2):283–295 · Zbl 0365.65014 · doi:10.1137/0714018
[28] Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59:1925–1944 · Zbl 1060.74583 · doi:10.1002/nme.945
[29] Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10:100–112 · doi:10.1007/BF01743537
[30] Murat F, Tartar L (1985) Optimality conditions and homogenization. Proceedings of Nonlinear variational problems (Isola d’Elba, 1983), Res. Notes in Math., vol 127. Pitman, Boston, pp 1–8 · Zbl 0569.49015
[31] Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89:259–279 · doi:10.1016/0045-7825(91)90044-7
[32] Paulino GH, Silva ECN (2005) Design of functionally graded structures using topology optimization. Materials Science Forum, 492–493, 435–440. Trans Tech Publications, Switzerland
[33] Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434 · Zbl 0907.73044 · doi:10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N
[34] Pomezanski V, Querin OM, Rozvany GIN (2005) CO-SIMP: extended SIMP algorithm with direct Corner Contact Control. Struct Multidisc Optim 30:164–168 · doi:10.1007/s00158-005-0514-4
[35] Poulsen TA (2002a) A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Struct Multidisc Optim 24:396–399 · doi:10.1007/s00158-002-0251-x
[36] Poulsen TA (2002b) Topology optimization in wavelet space. Int J Numer Methods Eng 53:567–582 · Zbl 1112.74464 · doi:10.1002/nme.285
[37] Poulsen TA (2003) A new scheme for imposing minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760 · Zbl 1062.74592 · doi:10.1002/nme.694
[38] Langelaar M (2007) The use of convex uniform honeycomb tessellations in structural topology optimization. Proceedings of the 7th world congress on structural and multidisciplinary optimization, Seoul, South Korea, 21–25 May 2007
[39] Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization. Struct Multidisc Optim 27:130–135 · doi:10.1007/s00158-003-0365-9
[40] Saxena R, Saxena A (2007) On honeycomb representation and SIGMOID material assignment in optimal topology synthesis of compliant mechanisms. Finite Elem Anal Des 43: 1082–1098 · doi:10.1016/j.finel.2007.08.004
[41] Sigmund O (2001) Design of multiphysics actuators using topology optimization–part II: two-material structures. Comput Methods Applied Mech Eng 190(49–50):6605–6627 · Zbl 1116.74407 · doi:10.1016/S0045-7825(01)00252-3
[42] Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424 · doi:10.1007/s00158-006-0087-x
[43] Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboard, mesh-dependence and local minima. Struct Optim 16:68–75 · doi:10.1007/BF01214002
[44] Silva E, Carbonari R, Paulino GH (2007) On graded elements for multiphysics applications. Smart Mater Struct 16:2408–2428 · doi:10.1088/0964-1726/16/6/045
[45] Sukumar N, Malsch EA (2005) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 11:1–38
[46] Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61:2045–2066 · Zbl 1073.65563 · doi:10.1002/nme.1141
[47] Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24:359–373 · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[48] Talischi C, Paulino GH, Le CH (2008) Topology optimization using Wachspress-type interpolation with hexagonal elements. In: Paulino GH et al (ed) Multiscale and functionally graded materials 2006 (M&amp;FGM 2006), AIP conference proceedings, vol 973. American Institute of Physics, Melville, New York, pp 309–316
[49] Wachspress EL (1975) A rational finite element basis. Academic Press, New York · Zbl 0322.65001
[50] Wang S (2007) Krylov subspace methods for topology optimization on adaptive meshes. PhD dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
[51] Wang M, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63:1911–1938 · Zbl 1138.74379 · doi:10.1002/nme.1347
[52] Warren J (2003) On the uniqueness of barycentric coordinates. Contemporary mathematics: proceedings of AGGM’02, pp 93–99 · Zbl 1043.52009
[53] Yoon GH, Kim YY (2005) Triangular checkerboard control using a wavelet-based method in topology optimization. Int J Numer Methods Eng 63:103–121 · Zbl 1082.74042 · doi:10.1002/nme.1263
[54] Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.