×

Topology optimization with multiple phase projection. (English) Zbl 1231.74360

Summary: Topology optimization is a powerful tool capable of generating new solutions to engineering design problems. While these designs may offer optimal performance in a computational setting, it is not uncommon for them to be impractical or unrealizable from engineering or fabrication points-of-view. This challenge motivates the present work. A methodology is proposed for restricting the minimum length scale of each material phase used in the design. The technique allows a designer to, for example, prescribe a minimum allowable length scale of structural members (solid phase) as well as the minimum allowable length scale on holes (void phase). The proposed approach utilizes the Heaviside Projection Method (HPM) to continuum topology optimization. Each material phase is associated with a design variable field that is projected onto element space using regularized Heaviside functions. The fields are independently projected and the resulting distributions are assembled to yield topology. The technique is demonstrated on classic topology optimization problems including minimum compliance, heat conduction, and compliant mechanisms. Solutions are shown to be near-discrete topologies satisfying minimum length scale criterion placed on each phase. Control over length scale is achieved implicitly and therefore the technique does not require additional constraints.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74P05 Compliance or weight optimization in solid mechanics
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[2] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer: Springer Berlin · Zbl 0957.74037
[3] Jog, C. S.; Haber, R. B., Stability of finite element models for distributed-parameter optimization and topology design, Comput. Methods Appl. Mech. Engrg., 130, 1, 203-226 (1996) · Zbl 0861.73072
[4] Diaz, A. R.; Sigmund, O., Checkerboard patterns in layout optimization, Struct. Optim., 10, 40-45 (1995)
[5] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 68-75 (1998)
[6] Petersson, J.; Sigmund, O., Slope constrained topology optimization, Int. J. Numer. Methods Engrg., 41, 1417-1434 (1998) · Zbl 0907.73044
[7] Poulsen, T. A., A new scheme for imposing minimum length scale in topology optimization, Int. J. Numer. Methods Engrg., 57, 741-760 (2003) · Zbl 1062.74592
[8] Guest, J. K., Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim., 37, 5, 463-473 (2009) · Zbl 1274.74336
[9] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., 25, 495-526 (1997)
[10] Bruns, T. E.; Tortorelli, D. A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190, 3443-3459 (2001) · Zbl 1014.74057
[11] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[12] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401-424 (2007)
[13] J.K. Guest, L.C. Smith Genut, Reducing dimensionality in topology optimization using adaptive design variable fields, Int. J. Numer. Methods Engrg., in press, doi:10.1002/nme.2724; J.K. Guest, L.C. Smith Genut, Reducing dimensionality in topology optimization using adaptive design variable fields, Int. J. Numer. Methods Engrg., in press, doi:10.1002/nme.2724 · Zbl 1183.74219
[14] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[15] Rozvany, G. I.N.; Zhou, M.; Birker, T., Generalized shape optimization without homogenization, Struct. Optim., 4, 250-252 (1992)
[16] Stolpe, M.; Svanberg, K., An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim., 22, 128-139 (2001)
[17] Swan, C. C.; Kosaka, O., Voigt-Reuss topology optimization for structures with linear elastic material behaviors, Int. J. Numer. Methods Engrg., 40, 3033-3057 (1997) · Zbl 0903.73047
[18] Borrvall, T.; Petersson, J., Topology optimization of fluids in Stokes flow, Int. J. Numer. Methods Fluids, 41, 77-107 (2003) · Zbl 1025.76007
[19] Guest, J. K.; Prévost, J. H., Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, Int. J. Numer. Methods Engrg., 66, 461-484 (2006) · Zbl 1110.76310
[20] Liang, Q. Q.; Steven, G. P., A performance-based optimization method for topology design of continuum structures with mean compliance constraints, Comput. Methods Appl. Mech. Engrg., 191, 1471-1489 (2002) · Zbl 1098.74660
[21] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[22] K. Svanberg, A globally convergent version of MMA without linesearch, in: G.I.N. Rozvany, N. Olhoff (Eds.), Proceedings of the First World Congress of Structural Multidisciplinary Optimization (held in Goslar, Germany), 1995, pp. 9-16.; K. Svanberg, A globally convergent version of MMA without linesearch, in: G.I.N. Rozvany, N. Olhoff (Eds.), Proceedings of the First World Congress of Structural Multidisciplinary Optimization (held in Goslar, Germany), 1995, pp. 9-16.
[23] J.K. Guest, Multiphase length scale control in topology optimization, in: Proceedings 8th World Congress on Structural Multidisciplinary Optimization (held in Lisbon, Portugal), 2009, pp. 1-10.; J.K. Guest, Multiphase length scale control in topology optimization, in: Proceedings 8th World Congress on Structural Multidisciplinary Optimization (held in Lisbon, Portugal), 2009, pp. 1-10.
[24] Guest, J. K.; Prévost, J. H., Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability, Int. J. Solids Struct., 43, 22-23, 7028-7047 (2006) · Zbl 1120.74712
[25] Carbonari, R. C.; Silva, E. C.N.; Paulino, G. H., Topology optimization design of functionally graded bimorph-type piezoelectric actuators, Smart Mater. Struct., 16, 2605-2620 (2007)
[26] Almeida, S. R.M.; Paulino, G. H.; Silva, E. C.N., A simple and effective inverse projection scheme for void distribution control in topology optimization, Struct. Multidiscip. Optim., 39, 359-371 (2009) · Zbl 1274.74304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.