×

Infrared problem for the Nelson model on static space-times. (English) Zbl 1269.83036

Summary: We consider the Nelson model on some static space-times and investigate the problem of existence of a ground state. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass \(m(x)\) tends to 0 at spatial infinity. We show that if \(m(x) \geq C |x|^{-1}\) at infinity for some \(C > 0\) then the Nelson Hamiltonian has a ground state.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83A05 Special relativity
83C15 Exact solutions to problems in general relativity and gravitational theory
80A10 Classical and relativistic thermodynamics
83C10 Equations of motion in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
81V17 Gravitational interaction in quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Ammari Z.: Asymptotic completeness for a renormalized non-relativistic Hamiltonian in quantum field theory: the Nelson model. Math. Phys. Anal. Geom. 3, 217–285 (2000) · Zbl 0976.81028 · doi:10.1023/A:1011408618527
[2] Arai A., Hirokawa M., Hiroshima F.: On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff. J. Funct. Anal. 168, 470–497 (1999) · Zbl 0997.47061 · doi:10.1006/jfan.1999.3472
[3] Bach V., Fröhlich J., Sigal I.M.: Quantum electrodynamics of confined non-relativistic particles. Adv. Math. 137, 299–395 (1998) · Zbl 0923.47040 · doi:10.1006/aima.1998.1734
[4] Bachelot A.: The Hawking effect. Ann. Inst. H. Poincaré Phys. Théor. 70, 41–99 (1999) · Zbl 0919.53034
[5] Betz V., Hiroshima F., Lörinczi J., Minlos R.A., Spohn H.: Ground state properties of the Nelson Hamiltonian – a Gibbs measure-based approach. Rev. Math. Phys. 14, 173–198 (2002) · Zbl 1029.81022 · doi:10.1142/S0129055X02001119
[6] Bruneau L., Dereziński J.: Pauli-Fierz Hamiltonians defined as quadratic forms. Rep. Math. Phys. 54, 169–199 (2004) · Zbl 1161.81358 · doi:10.1016/S0034-4877(04)80013-2
[7] Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180, 633–652 (1996) · Zbl 0923.58052 · doi:10.1007/BF02099626
[8] Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge: Cambridge University Press, 1989 · Zbl 0699.35006
[9] de Bièvre S., Merkli M.: The Unruh effect revisited. Class. Quant. Grav. 23, 6525–6542 (2006) · Zbl 1123.83012 · doi:10.1088/0264-9381/23/22/026
[10] Derezinski, J., Gérard, C.: Scattering Theory of Classical and Quantum N. Particle Systems. Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer-Verlag, 1997
[11] Derezinski J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999) · Zbl 1044.81556 · doi:10.1142/S0129055X99000155
[12] Derezinski J., Gérard C.: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Annales Henri Poincaré 5, 523–578 (2004) · Zbl 1060.81060 · doi:10.1007/s00023-004-0177-5
[13] Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127, 273–284 (1990) · Zbl 0692.53040 · doi:10.1007/BF02096757
[14] Georgescu V., Gérard C., Moeller J.: Spectral theory of massless Nelson models. Commun. Math. Phys. 249, 29–78 (2004) · Zbl 1091.81059 · doi:10.1007/s00220-004-1111-x
[15] Gérard C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 1, 443–455 (2000) · Zbl 1004.81012 · doi:10.1007/s000230050002
[16] Gérard C., Hiroshima F., Panati A., Suzuki A.: Infrared Divergence of a Scalar Quantum Field Model on a Pseudo Riemannian Manifold. Interdisciplinary Information Sciences 15, 399–421 (2009) · Zbl 1180.81098 · doi:10.4036/iis.2009.399
[17] Gérard, C., Hiroshima, F., Panati, A., Suzuki, A.: Absence of ground state for the Nelson model on static space-times. http://arxiv.org/abs/1012.2655vI [math-ph], 2010 · Zbl 1238.81161
[18] Gérard, C., Hiroshima, F., Panati, A., Suzuki, A.: Removal of UV cutoff for the Nelson model on static space-times. In preparation · Zbl 1257.81053
[19] Gérard C., Panati A.: Spectral and scattering theory for some abstract QFT Hamiltonians. Rev. Math. Phys. 21, 373–437 (2009) · Zbl 1166.81326 · doi:10.1142/S0129055X09003645
[20] Griesemer M.: Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics. J. Funct. Anal. 210, 321–340 (2004) · Zbl 1073.81029 · doi:10.1016/j.jfa.2003.06.001
[21] Griesemer M., Lieb E., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001) · Zbl 1044.81133 · doi:10.1007/s002220100159
[22] Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[23] Hirokawa M.: Infrared catastrophe for Nelson’s model, non-existence of ground state and soft-boson divergence. Publ. RIMS, Kyoto Univ. 42, 897–922 (2006) · Zbl 1117.81097 · doi:10.2977/prims/1166642191
[24] Lörinczi J., Minlos R.A., Spohn H.: The infrared behavior in Nelson’s model of a quantum particle coupled to a massless scalar field. Ann. Henri Poincaré 3, 1–28 (2002) · Zbl 1172.81330 · doi:10.1007/s00023-002-8617-6
[25] Milman P.D., Semenov Y.A.: Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212, 373–398 (2004) · Zbl 1057.47043 · doi:10.1016/j.jfa.2003.12.008
[26] Nelson E.: Interaction of non-relativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1997 (1964) · doi:10.1063/1.1704225
[27] Panati A.: Existence and nonexistence of a ground state for the massless Nelson model under binding condition. Rep. Math. Phys. 63, 305–330 (2009) · Zbl 1184.81139 · doi:10.1016/S0034-4877(09)00014-7
[28] Porper F.O., Eidel’man S.D.: Two sided estimates of fundamental solutions of second order parabolic equations and some applications. Russ. Math. Surv. 39, 119–178 (1984) · Zbl 0582.35052 · doi:10.1070/RM1984v039n03ABEH003164
[29] Radzikowski M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996) · Zbl 0858.53055 · doi:10.1007/BF02100096
[30] Radzikowski M.: A local-to-global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1–22 (1996) · Zbl 0874.58079 · doi:10.1007/BF02101180
[31] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I: Functional Analysis. New York: Academic Press, 1975 · Zbl 0308.47002
[32] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-adjointness. New York: Academic Press, 1975 · Zbl 0308.47002
[33] Sanders K.: Equivalence of the (generalized) Hadamard and microlocal spectrum condition for (generalized) free fields in curved space-time. Commun. Math. Phys. 295, 485–501 (2010) · Zbl 1192.53072 · doi:10.1007/s00220-009-0900-7
[34] Semenov Y.A.: Stability of l p pectrum of generalized Schrödinger operators and equivalence of Green’s functions. IMRN 12, 573–593 (1997) · Zbl 0905.47031 · doi:10.1155/S107379289700038X
[35] Simon B.: Functional Integration and Quantum Physics. Academic Press, New York (1979) · Zbl 0434.28013
[36] Spohn H.: Ground state of a quantum particle coupled to a scalar boson field. Lett. Math. Phys. 44, 9–16 (1998) · Zbl 0908.60094 · doi:10.1023/A:1007473300274
[37] Unruh W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976) · doi:10.1103/PhysRevD.14.870
[38] Unruh W.G, Wald R.: What happens when an accelerating observer detects a rindler particle. Phys. Rav. D 29, 1047–1056 (1984) · doi:10.1103/PhysRevD.29.1047
[39] Zhang Q.S.: Large time behavior of Schroedinger heat kernels and applications. Commun. Math. Phys. 210, 371–398 (2000) · Zbl 0978.35014 · doi:10.1007/s002200050784
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.