×

Spectral and scattering theory for some abstract QFT Hamiltonians. (English) Zbl 1166.81326

Summary: We introduce an abstract class of bosonic QFT Hamiltonians and study their spectral and scattering theories. These Hamiltonians are of the form \(H= d\Gamma(\omega)+V\) acting on the bosonic Fock space \(\Gamma({\mathfrak h})\), where \(\omega\) is a massive one-particle Hamiltonian acting on \({\mathfrak h}\) and \(V\) is a Wick polynomial \(\text{Wick}(w)\) for a kernel \(w\) satisfying some decay properties at infinity.
We describe the essential spectrum of \(H\), prove a Mourre estimate outside a set of thresholds and prove the existence of asymptotic fields. Our main result is the asymptotic completeness of the scattering theory, which means that the CCR representations given by the asymptotic fields are of Fock type, with the asymptotic vacua equal to the bound states of \(H\). As a consequence, \(H\) is unitarily equivalent to a collection of second quantized Hamiltonians.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81T08 Constructive quantum field theory
47N50 Applications of operator theory in the physical sciences
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81U05 \(2\)-body potential quantum scattering theory
81T10 Model quantum field theories

References:

[1] DOI: 10.1007/978-3-0348-7762-6 · doi:10.1007/978-3-0348-7762-6
[2] DOI: 10.1006/jfan.1999.3472 · Zbl 0997.47061 · doi:10.1006/jfan.1999.3472
[3] Boutet de Monvel A., Astérisque 210 pp 75–
[4] DOI: 10.1007/s002200000233 · Zbl 1082.81518 · doi:10.1007/s002200000233
[5] DOI: 10.1142/S0129055X99000155 · Zbl 1044.81556 · doi:10.1142/S0129055X99000155
[6] DOI: 10.1007/s00220-006-0134-x · Zbl 1137.81047 · doi:10.1007/s00220-006-0134-x
[7] DOI: 10.1016/j.jfa.2006.12.009 · Zbl 1121.46055 · doi:10.1016/j.jfa.2006.12.009
[8] DOI: 10.1007/s002200050758 · Zbl 0961.81009 · doi:10.1007/s002200050758
[9] DOI: 10.1007/s00220-004-1111-x · Zbl 1091.81059 · doi:10.1007/s00220-004-1111-x
[10] Gérard C., J. Math. Kyoto Univ. 38 pp 595– · Zbl 0934.35111 · doi:10.1215/kjm/1250518000
[11] DOI: 10.1007/s00023-008-0396-2 · Zbl 1165.81033 · doi:10.1007/s00023-008-0396-2
[12] Hörmander L., The Analysis of Linear Partial Differential Operators 3 (1985)
[13] DOI: 10.1080/03605309908821502 · Zbl 0944.35014 · doi:10.1080/03605309908821502
[14] DOI: 10.4310/ATMP.2003.v7.n4.a3 · Zbl 1058.81080 · doi:10.4310/ATMP.2003.v7.n4.a3
[15] DOI: 10.1007/s00023-003-0136-6 · Zbl 1057.81024 · doi:10.1007/s00023-003-0136-6
[16] DOI: 10.1080/03605307808820077 · Zbl 0392.35056 · doi:10.1080/03605307808820077
[17] DOI: 10.1002/cpa.3160240306 · doi:10.1002/cpa.3160240306
[18] DOI: 10.1016/0022-1236(72)90008-0 · Zbl 0241.47029 · doi:10.1016/0022-1236(72)90008-0
[19] DOI: 10.1017/CBO9780511535178 · Zbl 1078.81004 · doi:10.1017/CBO9780511535178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.