×

Numerical enclosure for each eigenvalue in generalized eigenvalue problem. (English) Zbl 1248.65039

The paper presents an algorithm for enclosing all eigenvalues in the generalized eigenvalue problem \[ Ax=\lambda Bx,\;A,B\in {\mathbb C}^{n\times n},\;\lambda\in{\mathbb C},\;x\in{\mathbb C}^n\tag{1} \] where \(\lambda\) is the eigenvalue and \(x\neq 0\) is an eigenvector corresponding to \(\lambda.\) This algorithm is applicable even if \(A\in {\mathbb C}^{n\times n}\) is not Hermitian and/or \(B\in{\mathbb C}^{n\times n}\) is not Hermitian positive definite, and supplies n error bounds \(r_1,\dots,r_n\) such that the all eigenvalues are included in the set \(\bigcup_{i=1}^{n}\{z\in{\mathbb C}:|z-\overline\lambda_i|\leq r_i\}\) when \(\overline D\in{\mathbb C}^{n\times n}\) is a diagonal matrix (\(\lambda_i:=\overline D_{ii},\; i=1,\dots,n\)) and \(\overline X\in{\mathbb C}^{n\times n}\) such that \(A\overline X=B\overline X\overline D\) are given.
The first section is an introductory one.
The second section establishes the theory for computing \(r_1,\dots,r_n.\)
The third section proposes an algorithm for enclosing all eigenvalues in ({1}).
The efficiency of the proposed algorithm is proved through four numerical examples presented in the fourth section.
The main conclusions are exposed in the last section.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices

Software:

INTLAB
Full Text: DOI

References:

[1] Chatelin, F., Eigenvalues of Matrices (1993), John Wiley & Sons · Zbl 0783.65031
[2] Kerner, W., Large-scale complex eigenvalue problems, J. Comput. Phys., 85, 1-85 (1989) · Zbl 0685.65028
[3] Behnke, H.; Kulisch, U.; Stetter, H. J., Inclusion of eigenvalues of general eigenvalue problems for matrices, Scientific Computation with Automatic Result Verification. Scientific Computation with Automatic Result Verification, Computing, 6, Suppl., 69-78 (1988) · Zbl 0663.65034
[4] Behnke, H., The calculation of guaranteed bounds for eigenvalues using complementary variational principles, Computing, 47, 11-27 (1991) · Zbl 0753.65032
[5] Maruyama, K.; Ogita, T.; Nakaya, Y.; Oishi, S., Numerical inclusion method for all eigenvalues of real symmetric definite generalized eigenvalue problem, IEICE Trans., J87-A, 8, 1111-1119 (2004), (in Japanese)
[6] Miyajima, S., Fast enclosure for all eigenvalues in generalized eigenvalue problems, J. Comput. Appl. Math., 233, 2994-3004 (2010) · Zbl 1188.65043
[7] Miyajima, S.; Ogita, T.; Rump, S. M.; Oishi, S., Fast verification for all eigenpairs in symmetric positive definite generalized eigenvalue problems, Reliab. Comput., 14, 24-45 (2010)
[8] Rump, S. M., Guaranteed inclusions for the complex generalized eigenproblem, Computing, 42, 225-238 (1989) · Zbl 0676.65028
[9] Rump, S. M., Computational error bounds for multiple or nearly multiple eigenvalues, Linear Algebra Appl., 324, 209-226 (2001) · Zbl 0986.65031
[10] Watanabe, Y.; Yamamoto, N.; Nakao, M. T., Verification methods of generalized eigenvalue problems and its applications, Trans. JSIAM, 9, 3, 137-150 (1999), (in Japanese)
[11] Yamamoto, N., A simple method for error bounds of eigenvalues of symmetric matrices, Linear Algebra Appl., 324, 227-234 (2001) · Zbl 0981.65042
[12] Parlett, B. N., The symmetric eigenvalue problem, (Classics in Applied Mathematics, vol. 20 (1997), SIAM Publications: SIAM Publications Philadelphia) · Zbl 0431.65016
[13] Matrix Market. http://math.nist.gov/MatrixMarket/; Matrix Market. http://math.nist.gov/MatrixMarket/
[14] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore, London · Zbl 0865.65009
[15] Meyer, C. D., Matrix Analysis and Applied Linear Algebra (2000), SIAM Publications: SIAM Publications Philadelphia · Zbl 0962.15001
[16] Rump, S. M., Intlab—interval laboratory, (Csendes, T., Developments in Reliable Computing (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 77-107 · Zbl 0949.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.