×

A simple method for error bounds of eigenvalues of symmetric matrices. (English) Zbl 0981.65042

If \(\rho_1\leq\rho_2\leq\cdots\leq\rho_n\) are the eigenvalues of a symmetric matrix \(A\) and \(\widetilde{\rho}\) is an approximate eigenvalue, then, given \(\delta_1,\delta_2\geq 0\), it is shown how to compute an interval \([\widetilde{\rho}-\varepsilon(\delta_1),\widetilde{\rho}+\varepsilon(\delta_2))\) that contains the eigenvalues \(\rho_k,\ldots,\rho_{k+r}\), where \(k-1\) and \(k+r\) are the number of negative eigenvalues of \(Y_1=A-(\widetilde{\rho}-\delta_1)I\) and \(Y_2=A-(\widetilde{\rho}+\delta_2)I\), respectively. The \(\varepsilon(\delta_i)\) are computed from the numerical error in the Cholesky decompositions of \(Y_i\). This technique can also be applied to the generalized eigenvalue problem \(Ax=\rho Bx\) if \(A\) and \(B\) are positive definite.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A42 Inequalities involving eigenvalues and eigenvectors
65G30 Interval and finite arithmetic
Full Text: DOI

References:

[1] Alefeld, G.; Spreuer, H., Iterative improvement of componentwise errorbounds for invariant subspaces belonging to a double or nearly double eigenvalue, Computing, 36, 321-334 (1986) · Zbl 0582.65026
[2] H. Behnke, Inclusion of eigenvalues of general eigenvalue problems for matrices, in: U. Kulisch, H.J. Stetter (Eds.), Scientific Computation with Automatic Result Verification, Computing 6 (Suppl.) (1988) 69-78; H. Behnke, Inclusion of eigenvalues of general eigenvalue problems for matrices, in: U. Kulisch, H.J. Stetter (Eds.), Scientific Computation with Automatic Result Verification, Computing 6 (Suppl.) (1988) 69-78 · Zbl 0663.65034
[3] F. Chatelin, Valeurs Propres de Matrices, Masson, Paris, 1988; F. Chatelin, Valeurs Propres de Matrices, Masson, Paris, 1988 · Zbl 0691.65018
[4] Dongarra, J. J.; Moler, C. B.; Wilkinson, J. H., Improving the accuracy of computed eigenvalues and eigenvectores, SIAM J. Numer. Anal., 20, 23-45 (1983) · Zbl 0523.65021
[5] R. Lohner, Enclosing all eigenvalues of symmetric matrices, in: Ch. Ullrich, J. Wolff von Gudenberg (Eds.), Accurate Numerical Algorithms: A Collection of Reserch Papers, Reserch Reports ESPRIT, Project 1072, DIAMOND (Development and Integration of Accutare Mathematical Operations in Numerical Data-Processing), vol. 1, Springer, Berlin, 1989, pp. 87-103; R. Lohner, Enclosing all eigenvalues of symmetric matrices, in: Ch. Ullrich, J. Wolff von Gudenberg (Eds.), Accurate Numerical Algorithms: A Collection of Reserch Papers, Reserch Reports ESPRIT, Project 1072, DIAMOND (Development and Integration of Accutare Mathematical Operations in Numerical Data-Processing), vol. 1, Springer, Berlin, 1989, pp. 87-103 · Zbl 0672.00009
[6] Ma, E. M.; Christopher, J. Z., On lower bounds for the smallest eigenvalue of a Hermitian positive-definite matrix, IEEE Transactions on Information Theory, 41, 2, 539-540 (1995) · Zbl 0838.15007
[7] G. Mayer, Enclosures for eigenvalues and eigenvectors, in: L. Atanassova, J. Herzberger (Eds.), Computer Arithmetic and Enclosure Methods, Proceedings of the Third International IMACS-GAMM Symposium on Computer Arithmetic and Scientific Computing (SCAN-91), Oldenburg, Germany, 1-4 October 1991, Elsevier, Amsterdam, 1992, pp. 49-68; G. Mayer, Enclosures for eigenvalues and eigenvectors, in: L. Atanassova, J. Herzberger (Eds.), Computer Arithmetic and Enclosure Methods, Proceedings of the Third International IMACS-GAMM Symposium on Computer Arithmetic and Scientific Computing (SCAN-91), Oldenburg, Germany, 1-4 October 1991, Elsevier, Amsterdam, 1992, pp. 49-68 · Zbl 0800.68032
[8] K. Murata, Analysis of eigenvalues of symmetric band matrices, Research Institute for Mathematical Sciences, Kyoto University, 422 (1981) 78-103 (in Japanese); K. Murata, Analysis of eigenvalues of symmetric band matrices, Research Institute for Mathematical Sciences, Kyoto University, 422 (1981) 78-103 (in Japanese)
[9] Rump, S. M., Guaranteed inclusions for the complex generalized eigenproblem, Computing, 42, 225-238 (1989) · Zbl 0676.65028
[10] S.M. Rump, Verification methods for dense and sparse systems of equations, in: J. Herzberger (Ed.), Topics in Validated Computations, Proceedings of the IMACS-GAMM International Workshop on Validated Computation, Oldenburg, Germany, 30th August-3rd September 1993, Elsevier, Amsterdam, 1994, pp. 63-136; S.M. Rump, Verification methods for dense and sparse systems of equations, in: J. Herzberger (Ed.), Topics in Validated Computations, Proceedings of the IMACS-GAMM International Workshop on Validated Computation, Oldenburg, Germany, 30th August-3rd September 1993, Elsevier, Amsterdam, 1994, pp. 63-136 · Zbl 0813.65072
[11] Wilkinson, J. H., The Algebric Eigenvalue Problem (1965), Oxford University Press: Oxford University Press London · Zbl 0258.65037
[12] Yamamoto, T., Error bounds for computed eigenvalues and eigenvectors, Numer. Math., 34, 189-199 (1980) · Zbl 0411.65022
[13] Yamamoto, T., Error bounds for computed eigenvalues and eigenvectors. II, Numer. Math., 40, 201-206 (1982) · Zbl 0491.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.