×

Fast enclosure for all eigenvalues in generalized eigenvalue problems. (English) Zbl 1188.65043

The author considers the generalized eigenvalue problem \(Ax=\lambda Bx\), where \(A,B\in{\mathbb C}^{n\times n}\), \(\lambda\in{\mathbb C}\), \(x\in{\mathbb C}^n\), and \(B\) is nonsingular. The proposed method supplies a rigorous error bound \(\epsilon\) such that all eigenvalues are included in the set \(\bigcup_{i=1}^n\{z\in{\mathbb C}; |z-\tilde\lambda_i|\leq\epsilon\}\), where \(\tilde\lambda_i\) denote approximate eigenvalues. It is assumed that, as a result of numerical computation, one has a diagonal matrix \(\tilde D\) and a matrix \(\tilde X\) such that \(A\tilde X\approx B\tilde X\tilde D\).
The following theorem is established: Let \(Y\) be an arbitrary \(n\times n\) complex matrix. Let also \(n\times n\) complex matrices \(R_1\) and \(R_2\) be defined as \(R_1:=Y(A\tilde X-B\tilde X\tilde D)\) and \(R_2:=YB\tilde X-1\). If \(\|R_2\|_\infty<1\), then \(B\), \(\tilde X\) and \(Y\) are nonsingular and it follows that \(\min_{1\leq i \leq n}|\lambda-\tilde\lambda_i|\leq\epsilon\), where \(\epsilon:=\|R_1\|_\infty/(1-\|R_2\|_\infty)\). A theorem for accelerating the enclosure is presented. As an application, the author derives an effficient method of enclosing all eigenvalues in polynomial eigenvalue problems (\(\lambda^mA_m+\cdots+\lambda A_1+A_0)x=0\).

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65G20 Algorithms with automatic result verification
65G50 Roundoff error
15A42 Inequalities involving eigenvalues and eigenvectors

Software:

mctoolbox; INTLAB
Full Text: DOI

References:

[1] Behnke, H.; Kulisch, U.; Stetter, H. J., Inclusion of eigenvalues of general eigenvalue problems for matrices, Scientific Computation with Automatic Result Verification. Scientific Computation with Automatic Result Verification, Computing, 6, Suppl, 69-78 (1988) · Zbl 0663.65034
[2] Behnke, H., The calculation of guaranteed bounds for eigenvalues using complementary variational principles, Computing, 47, 11-27 (1991) · Zbl 0753.65032
[3] Maruyama, K.; Ogita, T.; Nakaya, Y.; Oishi, S., Numerical inclusion method for all eigenvalues of real symmetric definite generalized eigenvalue problem, IEICE Trans., J87-A(8), 1111-1119 (2004), (in Japanese)
[5] Rump, S. M., Guaranteed inclusions for the complex generalized eigenproblem, Computing, 42, 225-238 (1989) · Zbl 0676.65028
[6] Rump, S. M., Computational error bounds for multiple or nearly multiple eigenvalues, Linear Algebra Appl., 324, 209-226 (2001) · Zbl 0986.65031
[7] Watanabe, Y.; Yamamoto, N.; Nakao, M. T., Verification methods of generalized eigenvalue problems and its applications, Trans. JSIAM, 9, 3, 137-150 (1999), (in Japanese)
[8] Yamamoto, N., A simple method for error bounds of eigenvalues of symmetric matrices, Linear Algebra Appl., 324, 227-234 (2001) · Zbl 0981.65042
[9] Parlett, B. N., (The Symmetric Eigenvalue Problem. The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, vol. 20 (1997), SIAM Publications: SIAM Publications Philadelphia) · Zbl 0431.65017
[11] Stewart, S. W.; Sun, J. G., Matrix Perturbation Theory (1990), Academic Press: Academic Press New York · Zbl 0706.65013
[12] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1965), Clarendon Press: Clarendon Press Oxford · Zbl 0258.65037
[13] Brent, R.; Percival, C.; Zimmermann, P., Error bounds on complex floating-point multiplication, Math. Comp., 76, 259, 1469-1481 (2007) · Zbl 1118.65031
[14] Higham, N. J., Accuracy and Stability of Numerical Algorithms (2002), SIAM Publications: SIAM Publications Philadelphia · Zbl 1011.65010
[15] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press: The Johns Hopkins University Press Baltimore and London · Zbl 0865.65009
[16] Bauer, F.; Fike, C., Norms and exclusion theorems, Numer. Math., 2, 137-141 (1960) · Zbl 0101.25503
[17] Arndt, H., On the interval systems \([x] = [A] [x] + [b]\) and the powers of interval matrices in complex interval arithmetics, Reliab. Comput., 13, 245-259 (2007) · Zbl 1115.65033
[18] Oishi, S., Fast enclosure of matrix eigenvalues and singular values via rounding mode controlled computation, Linear Algebra Appl., 324, 133-146 (2001) · Zbl 0978.65026
[19] Rump, S. M., INTLAB - INTerval LABoratory, (Csendes, T., Developments in Reliable Computing (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 77-107 · Zbl 0949.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.