×

Bounds for the perimeter of an ellipse. (English) Zbl 1248.33024

Let \(a\) and \(b\) be the semiaxes of an ellipse, \(a\not=b\). The perimeter of the ellipse is given by \[ L(a,b)=4\int_0^{\pi/2}\,\sqrt{a^2\cos^2t+b^2\sin^2t}\,dt. \] During the past few centuries, many easily computable approximations to \(L(a,b)\) have been suggested by a number of mathematicians.
The goal of the paper is to present several bounds for the perimeter of the ellipse in terms of harmonic, arithmetic, root-square means \[ H(a,b)=\frac{2ab}{a+b}\,, \quad A(a,b)=\frac{a+b}2\,, \quad S(a,b)=\sqrt{\frac{a^2+b^2}2}\,, \] which improve some well-known results. For instance, let \[ C(a,b)=\frac{5A(a,b)-H(a,b)}4\,, \qquad D(a,b)=\frac{A(a,b)+S(a,b)}2\,, \] then \[ \frac{\pi(5C-D)}2<L(a,b)<\frac{2(16-2(1+\sqrt{2})\pi)C-2(16-5\pi)D}{3-2\sqrt{2}}\,. \]

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
51M25 Length, area and volume in real or complex geometry
Full Text: DOI

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1992), Dover: Dover New York) · Zbl 0171.38503
[2] Almkvist, G.; Berndt, B., Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, \( \pi \), and the Ladies diary, Amer. Math. Monthly, 95, 585-608 (1988) · Zbl 0665.26007
[3] Alzer, H.; Qiu, S.-L., Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172, 289-312 (2004) · Zbl 1059.33029
[4] Anderson, G. D.; Qiu, S.-L.; Vamanamurthy, M. K.; Vuorinen, M., Generalized elliptic integrals and modular equations, Pacific J. Math., 192, 1-37 (2000) · Zbl 0951.33012
[5] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997), John Wiley & Sons: John Wiley & Sons New York · Zbl 0767.30018
[6] Barnard, R. W.; Pearce, K.; Richards, K. C., An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31, 693-699 (2000) · Zbl 0943.33002
[7] Barnard, R. W.; Pearce, K.; Richards, K. C., A monotonicity property involving \({}_3 F_2\) and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal., 32, 403-419 (2000) · Zbl 0983.33006
[8] Barnard, R. W.; Pearce, K.; Schovanec, L., Inequalities for the perimeter of an ellipse, J. Math. Anal. Appl., 260, 295-306 (2001) · Zbl 0985.26009
[9] Berndt, B. C., Ramanujan’s Notebooks, Part III (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0733.11001
[10] Borwein, J. M.; Borwein, P. B., Pi and the AGM (1987), John Wiley & Sons: John Wiley & Sons New York · Zbl 0699.10044
[11] Carlson, B. C., Special Functions of Applied Mathematics (1977), Academic Press: Academic Press New York · Zbl 0394.33001
[12] Chandrupatla, T. R.; Osler, T. J., The perimeter of an ellipse, Math. Sci., 35, 122-131 (2010) · Zbl 1217.51002
[13] Ponnusamy, S.; Vuorinen, M., Univalence and convexity properties of Gaussian hypergeometric functions, Rocky Mountain J. Math., 31, 327-353 (2001) · Zbl 0973.30017
[14] Qiu, S.-L.; Vuorinen, M., Special functions in geometric function theory, (Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (2005), Elsevier Sci. B. V.: Elsevier Sci. B. V. Amsterdam), 621-659 · Zbl 1073.30007
[15] Rainville, E. D., Special Functions (1960), Macmillan: Macmillan New York · Zbl 0050.07401
[16] Toader, Gh., Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl., 218, 358-368 (1998) · Zbl 0892.26015
[17] Vuorinen, M., Hypergeometric functions in geometric function theory, (Special Functions and Differential Equations (Madras, 1997) (1998), Allied Publ.: Allied Publ. New Delhi), 119-126 · Zbl 0948.30024
[18] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1962), Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 0105.26901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.