×

Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. (English) Zbl 1188.11024

In this work the author introduces a new method for establishing Rankin-Selberg type identities. In place of unfolding, he uses multiplicity one properties. Recall that if \(G\) is a real Lie group and \(H\) is a real Lie subgroup of \(G\) then the pair \((G,H)\) is called a strong Gelfand pair if for any representations \((\pi,V)\) of \(G\) and \((\sigma, W)\) of \(H\), the dimension of the space of \(H\)-equivariant maps of smooth vectors \(\text{Hom}_H(V,W)\) is at most one. The identities introduced here may be established when \({\mathcal G}\) is a real Lie group and \({\mathcal F}\subset {\mathcal H}_i\subset {\mathcal G}\), \(i=1,2\) are subgroups with the property that each of the pairs \(({\mathcal G},{\mathcal H}_i)\) and \(({\mathcal H}_i,{\mathcal F})\) are strong Gelfand pairs. The paper begins with a general description of how this set-up leads to Rankin-Selberg type identities when one computes the period of an automorphic form over the cycle associated to \({\mathcal F}\).
Next two cases are carried through in detail. Let \(G=\text{PGL}_2({\mathbb R})\), \(N\) be the standard unipotent subgroup of \(G\) and \(K=\text{PO}(2)\). In both cases, let \({\mathcal G}=G\times G\), \(\Delta\) be the standard diagonal embedding, and \({\mathcal H}_2=\Delta G\). For the first case, let \({\mathcal H}_1=N\times N\) and \({\mathcal F}=\Delta N\). Then the method introduced here leads to the classical Rankin-Selberg identity. This is explained, and the use of the identity with suitable test functions to estimate the standard (unipotent) Fourier coefficients of Maaßforms is also carried out. Strictly speaking, the uniqueness principle underlying the method is only almost satisfied for \(N\), but the theory of the constant term of the Eisenstein series is invoked to remedy this in the automorphic setting.
In the second case discussed in detail, \({\mathcal H}_1=K\times K\), \({\mathcal F}=\Delta K\). Using this, the author gives an anisotropic version of the classical Rankin-Selberg identity. As a consequence, he is able to give new bounds for the spherical Fourier coefficients of Maaßforms. (A similar bound for more general groups, but slightly weaker in this specific case, was proved using ergodic theory by A. Venkatesh [Sparse equidistribution problems, period bounds, and subconvexity, preprint, http://arxiv.org/abs/math/0506224].) Using a result of Waldspurger, this leads to a subconvexity bound in twisted aspect for an imaginary quadratic base change of a Maaßform. This is carried out in the setting of a co-compact discrete subgroup, so that \(\Gamma\backslash \mathbb H\) is a compact Riemann surface. In both settings, one needs to study certain integral transforms as well.
The method described here is very general. It has also been used by J. Bernstein and the author to give a subconvexity estimate for the triple \(L\)-function [ Subconvexity bounds for triple \(L\)-functions and representation theory. (Revised version to appear in Ann. Math. (2)), http://arxiv.org/abs/math/0608555].

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

References:

[1] J. Bernstein, Eisenstein series, lecture notes. Park City, Utah (2004).
[2] Joseph Bernstein and Andre Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. (2) 150 (1999), no. 1, 329 – 352. · Zbl 0934.11023 · doi:10.2307/121105
[3] Joseph Bernstein and Andre Reznikov, Sobolev norms of automorphic functionals, Int. Math. Res. Not. 40 (2002), 2155 – 2174. · Zbl 1022.11025 · doi:10.1155/S1073792802101139
[4] Joseph Bernstein and Andre Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), no. 1, 19 – 37, 310 (English, with English and Russian summaries). · Zbl 1081.11037
[5] -, Subconvexity of triple \( L\)-functions, preprint, arXiv: math.NT/0608555 (2006).
[6] Armand Borel, Automorphic forms on \?\?\(_{2}\)(\?), Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. · Zbl 0912.11023
[7] V. A. Borovikov, Uniform stationary phase method, IEE Electromagnetic Waves Series, vol. 40, Institution of Electrical Engineers (IEE), London, 1994. · Zbl 0822.65010
[8] Daniel Bump, The Rankin-Selberg method: an introduction and survey, Automorphic representations, \?-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 41 – 73. · Zbl 1188.11022 · doi:10.1515/9783110892703.41
[9] Roelof W. Bruggeman and Yoichi Motohashi, A new approach to the spectral theory of the fourth moment of the Riemann zeta-function, J. Reine Angew. Math. 579 (2005), 75 – 114. · Zbl 1064.11059 · doi:10.1515/crll.2005.2005.579.75
[10] Современные проблемы математики. Фундаментал\(^{\приме}\)ные направления, Том 13, Акад. Наук СССР, Всесоюз. Инст. Научн. и Техн. Информ., Мосцощ, 1986 [ МР0899751 (88ц:00008)]; Транслатион бы Д. Нещтон; Транслатион едитед бы Р. В. Гамкрелидзе.
[11] I. M. Gel\(^{\prime}\)fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. I. M. Gel\(^{\prime}\)fand and G. E. Shilov, Generalized functions. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968 [1977]. Spaces of fundamental and generalized functions; Translated from the Russian by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. I. M. Gel\(^{\prime}\)fand and G. E. Shilov, Generalized functions. Vol. 3, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1967 [1977]. Theory of differential equations; Translated from the Russian by Meinhard E. Mayer. I. M. Gel\(^{\prime}\)fand and N. Ya. Vilenkin, Generalized functions. Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Applications of harmonic analysis; Translated from the Russian by Amiel Feinstein. I. M. Gel\(^{\prime}\)fand, M. I. Graev, and N. Ya. Vilenkin, Generalized functions. Vol. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1966 [1977]. Integral geometry and representation theory; Translated from the Russian by Eugene Saletan.
[12] I. M. Gel\(^{\prime}\)fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Generalized Functions, vol. 6, Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch; Reprint of the 1969 edition.
[13] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), no. 4, 523 – 548. · Zbl 0439.30031 · doi:10.1007/BF01451932
[14] Benedict H. Gross, Some applications of Gel\(^{\prime}\)fand pairs to number theory, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 277 – 301. · Zbl 0733.11018
[15] Sigurdur Helgason, Groups and geometric analysis, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions; Corrected reprint of the 1984 original. · Zbl 0965.43007
[16] Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators.
[17] Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. · Zbl 1006.11024
[18] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of \?-functions, Geom. Funct. Anal. Special Volume (2000), 705 – 741. GAFA 2000 (Tel Aviv, 1999). · Zbl 0996.11036 · doi:10.1007/978-3-0346-0425-3_6
[19] Hervé Jacquet and Nan Chen, Positivity of quadratic base change \?-functions, Bull. Soc. Math. France 129 (2001), no. 1, 33 – 90 (English, with English and French summaries). · Zbl 1069.11017
[20] Henry H. Kim, Functoriality for the exterior square of \?\?\(_{4}\) and the symmetric fourth of \?\?\(_{2}\), J. Amer. Math. Soc. 16 (2003), no. 1, 139 – 183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. · Zbl 1018.11024
[21] Bernhard Krötz and Robert J. Stanton, Holomorphic extensions of representations. I. Automorphic functions, Ann. of Math. (2) 159 (2004), no. 2, 641 – 724. · Zbl 1053.22009 · doi:10.4007/annals.2004.159.641
[22] Tomio Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. · Zbl 0268.10012
[23] N. V. Kuznetsov, Sums of Kloosterman sums and the eighth power moment of the Riemann zeta-function, Number theory and related topics (Bombay, 1988) Tata Inst. Fund. Res. Stud. Math., vol. 12, Tata Inst. Fund. Res., Bombay, 1989, pp. 57 – 117. · Zbl 0745.11040
[24] John B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), no. 3, 287 – 307. · Zbl 0398.43010 · doi:10.1016/0022-1236(78)90032-0
[25] Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141 – 183 (German). · Zbl 0033.11702 · doi:10.1007/BF01329622
[26] K. Martin and D. Whitehouse, Central \( L\)-values and toric periods for \( GL(2)\), preprint (2007).
[27] Yoichi Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, vol. 127, Cambridge University Press, Cambridge, 1997. · Zbl 0878.11001
[28] -, A note on the meanvalue of the zeta and \( L\)-functions, preprint, arXiv: math.NT/0401085.
[29] A. I. Oksak, Trilinear Lorentz invariant forms, Comm. Math. Phys. 29 (1973), 189 – 217.
[30] Yiannis N. Petridis and Peter Sarnak, Quantum unique ergodicity for \?\?\(_{2}\)(\?)\?³ and estimates for \?-functions, J. Evol. Equ. 1 (2001), no. 3, 277 – 290. Dedicated to Ralph S. Phillips. · Zbl 0995.11036 · doi:10.1007/PL00001371
[31] Dipendra Prasad, Trilinear forms for representations of \?\?(2) and local \?-factors, Compositio Math. 75 (1990), no. 1, 1 – 46. · Zbl 0731.22013
[32] R. A. Rankin, Contributions to the theory of Ramanujan’s function \?(\?) and similar arithmetical functions. I. The zeros of the function \sum ^{\infty }_{\?=1}\?(\?)/\?^{\?} on the line ℜ\?=13/2. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351 – 372. · JFM 65.0353.01
[33] A. Reznikov, Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory, preprint (2004). arXiv: math.AP/0403437.
[34] Peter Sarnak, Integrals of products of eigenfunctions, Internat. Math. Res. Notices 6 (1994), 251 ff., approx. 10 pp., issn=1073-7928, review=\MR{1277052}, doi=10.1155/S1073792894000280,. · Zbl 0833.11020
[35] Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1 – 15. · Zbl 0142.33903
[36] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[37] A. Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity, preprint (2005). arXiv: math.NT/0506224. · Zbl 1214.11051
[38] J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur \?\?(2), Compositio Math. 54 (1985), no. 2, 121 – 171 (French). J.-L. Waldspurger, Sur les valeurs de certaines fonctions \? automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173 – 242 (French).
[39] T. Watson, Thesis, Princeton, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.