×

Fourth moments of Grössencharakteren zeta functions. (English) Zbl 0577.10026

Integrals of L-series for automorphic forms on hyperbolic three-space are studied. Let F be an automorphic form for the group \(SL_ 2({\mathfrak O})\) with \({\mathfrak O}\) the ring of integers of \({\mathbb{Q}}(\sqrt{-1})\), let \(L_ f(s,m)\) be its L-series, twisted by the character \(\alpha \mapsto (\alpha /| \alpha |)^{4m}\). It is shown that \[ \sum_{| m| \leq T}\int^{T}_{-T}| L_ f(+it,m)|^ 2 dt\ll T^ 2(\log T)^ b \] with \(b=1\) if f is a cusp form and \(b=4\) otherwise. By taking for f a suitable derivative of the Eisenstein series the author obtains the corresponding result for the fourth power of \[ L(s,\lambda^ m)=\sum_{\alpha \neq 0,\alpha \in {\mathfrak O}}(\alpha /| \alpha |)^{4m} N(\alpha)^{-s}. \]
Reviewer: R.W.Bruggeman

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11M35 Hurwitz and Lerch zeta functions
11F27 Theta series; Weil representation; theta correspondences
11R42 Zeta functions and \(L\)-functions of number fields
Full Text: DOI

References:

[1] Chandrasekharan, Math. Ann. 152 pp 30– (1963)
[2] Good, Math. Zeit 183 pp 95– (1983)
[3] and , Tables of Integrals and Products, Academic Press, New York, 1980.
[4] Hardy, Acta Math. 41 pp 119– (1918)
[5] Hecke, Math. Zeit BD 6 pp 11– (1920)
[6] The Selberg Trace Formula for PSL(2,R), V2, Springer Lecture Notes 1001, 1983. · doi:10.1007/BFb0061302
[7] Ingham, London Math. Soc. (2) 27 pp 273– (1926)
[8] Kovalcik, Soviet Math. Dokl. 15 pp 1521– (1974)
[9] Kubilyus, Uchen. Zap. Vilnyussk, Univ. Ser. Mat. Fiz. Khim. Navk. 4 pp 5– (1955)
[10] Lavrik, Mat. Zametki 2 pp 475– (1967)
[11] Siegel’s Modular Forms and Dirichlet Series, Springer Lecture Notes 216, 1971. · Zbl 0224.10028 · doi:10.1007/BFb0058625
[12] Topics in Multiplicative Number Theory, Springer Lecture Notes 227, 1971. · Zbl 0216.03501 · doi:10.1007/BFb0060851
[13] Terras, Fourier analysis on symmetric spaces with applications
[14] The Theory of the Riemann Zeta Function, Clarendon Press, Oxford, 1951.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.