×

Finite element approximation of a three dimensional phase field model for void electromigration. (English) Zbl 1203.65175

Summary: We consider a finite element approximation of a phase field model for the evolution of voids by surface diffusion in an electrically conducting solid. The phase field equations are given by the nonlinear degenerate parabolic system \[ \gamma\frac{\partial u}{\partial t}-\nabla.(b(u)\nabla[w+\alpha\phi])=0,\qquad w=-\gamma\Delta u+\gamma^{-1}\Psi'(u),\qquad\nabla.(c(u)\nabla\phi)=0 \] subject to an initial condition \(u ^{0}(\cdot )\in [ - 1,1]\) on \(u\) and flux boundary conditions on all three equations. Here \(\gamma \in \mathbb R_{>0}, \alpha \in \mathbb R_{\geq 0}, \Psi \) is a non-smooth double well potential, and \(c(u):=1+u, b(u):=1 - u ^{2}\) are degenerate coefficients. On extending existing results for the simplified two dimensional phase field model, we show stability bounds for our approximation and prove convergence, and hence existence of a solution to this nonlinear degenerate parabolic system in three space dimensions. Furthermore, a new iterative scheme for solving the resulting nonlinear discrete system is introduced and some numerical experiments are presented.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
80A22 Stefan problems, phase changes, etc.

Software:

ALBERT

References:

[1] Baňas L, Nürnberg R: A multigrid method for the Cahn–Hilliard equation with obstacle potential (2008, submitted)
[2] Baňas L, Nürnberg R: Phase field computations for surface diffusion and void electromigration in \(\mathbb{R}\)3. Comput. Vis. Sci. (2008). doi: 10.1007/s00791-008-0114-0
[3] Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203, 321–343 (2005) · Zbl 1070.65093 · doi:10.1016/j.jcp.2004.08.022
[4] Barrett, J.W., Blowey, J.F.: Finite element approximation of a degenerate Allen–Cahn/Cahn–Hilliard system. SIAM J. Numer. Anal. 39, 1598–1624 (2001) · Zbl 1012.35004 · doi:10.1137/S0036142900382144
[5] Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80, 525–556 (1998) · Zbl 0913.65084 · doi:10.1007/s002110050377
[6] Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318 (1999) · Zbl 0947.65109 · doi:10.1137/S0036142997331669
[7] Barrett, J.W., Blowey, J.F., Garcke, H.: On fully practical finite element approximations of degenerate Cahn–Hilliard systems. M2AN Math. Model. Numer. Anal. 35, 713–748 (2001) · Zbl 0987.35071 · doi:10.1051/m2an:2001133
[8] Barrett, J.W., Langdon, S., Nürnberg, R.: Finite element approximation of a sixth order nonlinear degenerate parabolic equation. Numer. Math. 96, 401–434 (2004) · Zbl 1041.65076 · doi:10.1007/s00211-003-0479-4
[9] Barrett, J.W., Nürnberg, R., Styles, V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42, 738–772 (2004) · Zbl 1076.78012 · doi:10.1137/S0036142902413421
[10] Barrett, J.W., Nürnberg, R., Warner, M.R.E.: Finite element approximation of soluble surfactant spreading on a thin film. SIAM J. Numer. Anal. 44, 1218–1247 (2006) · Zbl 1301.76044 · doi:10.1137/040618400
[11] Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}\)3. J. Comput. Phys. 227, 4281–4307 (2008) · Zbl 1145.65068 · doi:10.1016/j.jcp.2007.11.023
[12] Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992) · Zbl 0810.35158 · doi:10.1017/S0956792500000759
[13] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23, 489–505 (2003) · Zbl 1042.65081 · doi:10.1093/imanum/23.3.489
[14] Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996) · Zbl 0861.35039 · doi:10.1017/S0956792500002369
[15] Chopp, D.L., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1, 107–123 (1999) · Zbl 0938.65144 · doi:10.4171/IFB/6
[16] Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005) · Zbl 1113.65097 · doi:10.1017/S0962492904000224
[17] Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996) · Zbl 0856.35071 · doi:10.1137/S0036141094267662
[18] Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation of the Hele–Shaw problem. Interfaces Free Bound. 7, 1–28 (2005) · Zbl 1072.35150 · doi:10.4171/IFB/111
[19] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984) · Zbl 0536.65054
[20] Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, vol. 8. North-Holland, Amsterdam (1981). Translated from the French
[21] Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 91–102. Springer, Berlin (2007)
[22] Grün, G.: On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comput. 72, 1251–1279 (2003) · Zbl 1084.65093 · doi:10.1090/S0025-5718-03-01492-3
[23] Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69, 167–184 (1994) · Zbl 0817.65051
[24] Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed cartesian grid. J. Comput. Phys. 152, 281–304 (1999) · Zbl 0956.78016 · doi:10.1006/jcph.1999.6249
[25] Manservisi, S.: Numerical analysis of Vanka-type solvers for steady stokes and Navier–Stokes flows. SIAM J. Numer. Anal. 44, 2025–2056 (2006) · Zbl 1120.76042 · doi:10.1137/060655407
[26] Mayer, U.F.: A numerical scheme for moving boundary problems that are gradient flows for the area functional. Eur. J. Appl. Math. 11, 61–80 (2000) · Zbl 0945.76016 · doi:10.1017/S0956792599003812
[27] Mayer, U.F.: Numerical solutions for the surface diffusion flow in three space dimensions. Comput. Appl. Math. 20, 361–379 (2001) · Zbl 1125.35422
[28] Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957) · doi:10.1063/1.1722742
[29] Nürnberg, R.: Finite element approximation of some degenerate nonlinear parabolic systems. PhD thesis, University of London, London (2003)
[30] Schmidt, A., Siebert, K.G.: ALBERT–software for scientific computations and applications. Acta Math. Univ. Comen. (N.S.) 70, 105–122 (2000) · Zbl 0993.65134
[31] Schoberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer. Math. 95, 377–399 (2003) · Zbl 1033.65105 · doi:10.1007/s00211-002-0448-3
[32] Simon, J.: Compact sets in the space L p (0,T;B). Ann. Math. Pura. Appl. 146, 65–96 (1987) · Zbl 0629.46031
[33] Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003) · Zbl 1035.65098 · doi:10.1023/A:1025324613450
[34] Zhang, Y.W., Bower, A.F., Xia, L., Shih, C.F.: Three dimensional finite element analysis of the evolution of voids and thin films by strain and electromigration induced surface diffusion. J. Mech. Phys. Solids 47, 173–199 (1999) · Zbl 0964.74073 · doi:10.1016/S0022-5096(98)00079-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.