×

On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. (English) Zbl 1084.65093

Summary: We present nonnegativity-preserving finite element schemes for a general class of thin film equations in multiple space dimensions. The equations are fourth order degenerate parabolic, and may contain singular terms of second order which are to model van der Waals interactions. A subtle discretization of the arising nonlinearities allows us to prove discrete counterparts of the essential estimates found in the continuous setting. By use of the entropy estimate, strong convergence results for discrete solutions are obtained. In particular, the limit of discrete fluxes \(M_h(U_h)\nabla P_h\) will be identified with the flux \(\mathcal M(u)\nabla(W'(u)-\Delta u)\) in the continuous setting. As a by-product, first results on existence and positivity almost everywhere of solutions to equations with singular lower order terms can be established in the continuous setting.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76A20 Thin fluid films
76D08 Lubrication theory
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] J. Barrett, J. Blowey, and H. Garcke. Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math., 80:525-556, 1998. · Zbl 0913.65084
[2] John W. Barrett, James F. Blowey, and Harald Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal. 37 (1999), no. 1, 286 – 318. · Zbl 0947.65109 · doi:10.1137/S0036142997331669
[3] J. Barrett, J. Blowey, and H. Garcke. On fully practical finite element approximations of degenerate Cahn-Hilliard systems. Math. Model. Numer. Anal., 35:713-748, 2001. · Zbl 0987.35071
[4] J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, and R. Blossey. Complex dewetting scenarios captured by thin film models. Nature Materials. In press.
[5] Elena Beretta, Michiel Bertsch, and Roberta Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal. 129 (1995), no. 2, 175 – 200. · Zbl 0827.35065 · doi:10.1007/BF00379920
[6] J. I. Diaz, M. A. Herrero, A. Liñán, and J. L. Vázquez , Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series, vol. 323, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.
[7] Francisco Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations 1 (1996), no. 3, 337 – 368. · Zbl 0846.35058
[8] Francisco Bernis and Avner Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), no. 1, 179 – 206. · Zbl 0702.35143 · doi:10.1016/0022-0396(90)90074-Y
[9] A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math. 49 (1996), no. 2, 85 – 123. , https://doi.org/10.1002/(SICI)1097-0312(199602)49:23.3.CO;2-V · Zbl 0863.76017
[10] Michiel Bertsch, Roberta Dal Passo, Harald Garcke, and Günther Grün, The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998), no. 3, 417 – 440. · Zbl 0954.35035
[11] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[12] Roberta Dal Passo, Harald Garcke, and Günther Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 (1998), no. 2, 321 – 342. · Zbl 0929.35061 · doi:10.1137/S0036141096306170
[13] R. Dal Passo, L. Giacomelli, and G. Grün. A waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa, XXX:437-463, 2001. CMP 2002:11 · Zbl 1024.35051
[14] Charles M. Elliott and Harald Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27 (1996), no. 2, 404 – 423. · Zbl 0856.35071 · doi:10.1137/S0036141094267662
[15] C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal. 30 (1993), no. 6, 1622 – 1663. · Zbl 0792.65066 · doi:10.1137/0730084
[16] G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Z. Anal. Anwendungen 14 (1995), no. 3, 541 – 574. · Zbl 0835.35061 · doi:10.4171/ZAA/639
[17] G. Grün. On the numerical simulation of wetting phenomena. In W. Hackbusch and S. Sauter, editors, Proceedings of the 15th GAMM-Seminar Kiel, Numerical methods of composite materials. Vieweg-Verlag, Braunschweig. To appear.
[18] Günther Grün and Martin Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000), no. 1, 113 – 152. · Zbl 0988.76056 · doi:10.1007/s002110000197
[19] G. Grün and M. Rumpf. Simulation of singularities and instabilities in thin film flow. Euro. J. Appl. Math., 12:293-320, 2001. · Zbl 0991.76041
[20] C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, and G. Grün. Satellite hole formation during dewetting: experiment and simulation. Submitted for publication.
[21] A. Oron, S.H. Davis, and S.G. Bankoff. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69:932-977, 1997.
[22] Kôsaku Yosida, Functional analysis, 4th ed., Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123.
[23] L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (2000), no. 2, 523 – 555. · Zbl 0961.76060 · doi:10.1137/S0036142998335698
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.