×

Iwasawa theory of totally real fields for certain non-commutative \(p\)-extensions. (English) Zbl 1196.11148

The author proves the Iwasawa main conjecture (IMC) for a certain family of non-commutative \(1\)-dimensional \(p\)-adic Lie extensions of totally real fields. Before we state the main theorem of the paper, we briefly recall the main ingredients of the IMC.
Let \(F\) be a totally real number field and \(F^{\infty} / F\) a Galois extension with Galois group \(G\) satisfying the following conditions: \(G\) is a compact \(p\)-adic Lie group; only finitely many primes of \(F\) ramify in \(F^{\infty}\); \(F^{\infty}\) is totally real and contains the cyclotomic \(\mathbb{Z}_p\)-extension of \(F\). Let \(\Lambda(G)\) be the Iwasawa algebra of \(G\) and let \(S\) be the canonical Ore set for \(G\). Then there is a localization sequence \[ K_1(\Lambda(G)) \rightarrow K_1(\Lambda(G)_S) \overset{\partial}{\rightarrow} K_0(\Lambda(G), \Lambda(G)_S) \rightarrow 0 \] and the canonical complex \[ C = C(F^{\infty} / F) = R\mathrm{Hom}(R \Gamma_{et}( \mathrm{Spec} (\mathfrak{o}_{F^{\infty}}[1 / \Sigma], \mathbb{Q}_p / \mathbb{Z}_p),\mathbb{Q}_p / \mathbb{Z}_p) \] defines a class \([C(F^{\infty} / F)] \in K_0(\Lambda(G), \Lambda(G)_S)\). Here, \(\Sigma\) is a finite set of primes of \(F\) containing all the infinite primes and all primes which ramify in \(F^{\infty}\). Let us denote the cyclotomic character by \(\kappa\) and the (complex) \(\Sigma\)-truncated Artin \(L\)-function of an Artin representation \(\rho\) of \(G\) by \(L_{\Sigma}(s, \rho)\). Then the IMC asserts that there is a (unique) element \(\xi_{F^{\infty}/F} \in K_1(\Lambda(G)_S)\) such that \(\partial(\xi_{F^{\infty}/F}) = - [C(F^{\infty} / F)]\) and “evaluation” of \(\xi_{F^{\infty}/F}\) at \(\rho \kappa^r\) yields an equality \(\xi_{F^{\infty}/F}(\rho \kappa^r) = L_{\Sigma}(1-r, \rho)\) for all natural numbers \(r\) divisible by \(p-1\).
The author considers \(1\)-dimensional \(p\)-adic Lie groups \(G = G^f \times \Gamma\), where \(\Gamma \simeq \mathbb{Z}_p\) and \[ G^f = \begin{pmatrix} 1 & \mathbb{F}_p & \mathbb{F}_p & \mathbb{F}_p \\ 0 & 1 & \mathbb{F}_p & \mathbb{F}_p \\ 0 & 0 & 1 & \mathbb{F}_p \\ 0 & 0 & 0 & 1\end{pmatrix} \] and proves the IMC (up to its uniqueness statement) for \(F^{\infty} / F\) provided that \(p \not=2,3\) and the Iwasawa \(\mu\)-invariant vanishes. The main tool of the proof is a theorem of David Burns which reduces the IMC to the commutative case under certain hypotheses. One of them is that each Artin representation of \(G\) is a \(\mathbb{Z}\)-linear combination of induced representations \(\mathrm{ind} (\chi)\), where the \(\chi\)’s are abelian representations. The main part of the paper deals with the verification of these hypotheses in the above mentioned special cases. This yields to some hard computations and in particular to the verification of certain congruences between \(p\)-adic pseudomeasures in the spirit of the congruences of J. Ritter and A. Weiss [Math. Res. Lett. 15, No. 4, 715–725 (2008; Zbl 1158.11047)] and of K. Kato [“Iwasawa theory of totally real fields for Galois extensions of Heisenberg type.” preprint].
The reviewer would like to point out that recent unpublished work of J. Ritter and A. Weiss has led to a full proof of the IMC (up to its uniqueness statement) in the \(1\)-dimensional case provided that \(\mu\) vanishes.

MSC:

11R23 Iwasawa theory
11R80 Totally real fields
11R42 Zeta functions and \(L\)-functions of number fields

Citations:

Zbl 1158.11047

References:

[1] Bass, H., Algebraic \(K\)-Theory (1968), Benjamin · Zbl 0174.30302
[2] Berrick, A. J.; Keating, M. E., The localization sequence in \(K\)-theory, \(K\)-Theory, 9, 577-589 (1995) · Zbl 0837.19002
[3] Burns, D.; Flach, M., Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., 6, 501-570 (2001) · Zbl 1052.11077
[4] Coates, J., \(p\)-adic \(L\)-functions and Iwasawa’s theory, (Algebraic Number Fields: \(L\)-Functions and Galois Properties (1977), Academic Press: Academic Press London) · Zbl 0393.12027
[5] Coates, J.; Fukaya, T.; Kato, K.; Sujatha, R.; Venjakob, O., The \(GL_2\) main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci., 101, 163-208 (2005) · Zbl 1108.11081
[6] Deligne, P.; Ribet, K. A., Values of abelian \(L\)-functions at negative integers over totally real fields, Invent. Math., 59, 227-286 (1980) · Zbl 0434.12009
[7] Ferrero, B.; Washington, L. C., The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields, Ann. of Math., 109, 377-395 (1979) · Zbl 0443.12001
[8] Fukaya, T.; Kato, K., A formulation of conjectures on \(p\)-adic zeta functions in noncommutative Iwasawa theory, (Proceedings of the St. Petersburg Mathematical Society, vol. XII. Proceedings of the St. Petersburg Mathematical Society, vol. XII, Amer. Math. Soc. Transl. Ser. 2, vol. 219 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-85 · Zbl 1238.11105
[9] Hachimori, Y.; Sharifi, R. T., On the failure of pseudo-nullity of Iwasawa modules, J. Algebraic Geom., 14, 567-591 (2005) · Zbl 1085.11054
[10] Higman, G., The units of group rings, Proc. London Math. Soc., 46, 2, 231-248 (1940) · JFM 66.0104.04
[11] Kakde, M., Proof of the main conjecture of noncommutative Iwasawa theory for totally real number fields in certain cases, preprint · Zbl 1242.11084
[12] Kato, K., \(K_1\) of some non-commutative completed group rings, \(K\)-Theory, 34, 99-140 (2005) · Zbl 1080.19002
[14] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings (1987), Wiley · Zbl 0644.16008
[15] Milnor, J., Introduction to Algebraic \(K\)-Theory (1971), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0237.18005
[16] Oliver, R., \(S K_1\) for finite group rings: II, Math. Scand., 47, 195-231 (1980) · Zbl 0456.16027
[17] Oliver, R., Whitehead Groups of Finite Groups, London Math. Soc. Lecture Note Ser., vol. 132 (1988), Cambridge Univ. Press · Zbl 0636.18001
[18] Oliver, R.; Taylor, L. R., Logarithmic descriptions of Whitehead groups and class groups for \(p\)-groups, Mem. Amer. Math. Soc., 76, 392 (1988) · Zbl 0668.16013
[19] Ritter, J.; Weiss, A., Toward equivariant Iwasawa theory, Part I, Manuscripta Math.. Manuscripta Math., Indag. Math. (N.S.). Manuscripta Math.. Manuscripta Math., Indag. Math. (N.S.), Math. Ann.. Manuscripta Math.. Manuscripta Math., Indag. Math. (N.S.). Manuscripta Math.. Manuscripta Math., Indag. Math. (N.S.), Math. Ann., Homology, Homotopy Appl., 7, 155-171 (2005), Part IV · Zbl 1154.11037
[20] Ritter, J.; Weiss, A., Non-abelian pseudomeasures and congruences between abelian Iwasawa \(L\)-functions, Pure Appl. Math. Q., 4, 4, 1085-1106 (2008), part 1 · Zbl 1193.11104
[21] Ritter, J.; Weiss, A., Congruences between abelian pseudomeasures, Math. Res. Lett., 15, 4, 715-725 (2008) · Zbl 1158.11047
[22] Ritter, J.; Weiss, A., Equivariant Iwasawa theory: An example, Doc. Math., 13, 117-129 (2008) · Zbl 1243.11105
[23] Serre, J.-P., Représentations Linéaires des Groupes Finis (1967), Hermann · Zbl 0189.02603
[24] Serre, J.-P., Sur le résidu de la fonction zêta \(p\)-adique d’un corps de nombres, C. R. Math. Acad. Sci. Paris Sér. A, 287, 183-188 (1978) · Zbl 0393.12026
[25] Stenström, B., Rings of Quotients (1975), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0296.16001
[26] Swan, R. G., Algebraic \(K\)-Theory, Lecture Notes in Math., vol. 76 (1968), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0193.34601
[27] Taylor, M. J., Classgroups of Group Rings, London Math. Soc. Lecture Note Ser., vol. 91 (1984), Cambridge Univ. Press · Zbl 0597.13002
[28] Wall, C. T.C., Norms of units in group rings, Proc. Lond. Math. Soc., 29, 3, 593-632 (1974) · Zbl 0302.16013
[29] Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. (2), 131, 3, 493-540 (1990) · Zbl 0719.11071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.