×

On the failure of pseudo-nullity of Iwasawa modules. (English) Zbl 1085.11054

Consider a prime number \(p\) and a Galois extension \(L\) of a number field \(F\) with Galois group \(\mathfrak G = \text{Gal}(L/F)\). Let \(X_ L\) denote the Galois group of the maximal abelian pro-\(p\) extension of \(L\) and \(\Lambda (\mathfrak G)\) denote the Iwasawa algebra \({\mathbb Z}_ p[[\mathfrak G]]\) of \(\mathfrak G\). Then \(X_ L\) is a \(\Lambda (\mathfrak G)\)-module via conjugation. It is said that \(L/F\) is admissible if \(\mathfrak G\) has dimension larger than or equal to \(2\), \(L\) contains the cyclotomic \({\mathbb Z}_ p\)-extension \(K\) of \(F\), and \(L/F\) is unramified outside a finite set of prime divisors of \(F\). If in addition \(\mathfrak G\) is pro-\(p\) and contains no elements of order \(p\), \(L/F\) is called strongly admissible.
R. Greenberg [Adv. Stud. Pure Math. 30, 335–385 (2001; Zbl 0998.11054)] conjectured that when \(L\) is the compositum of all \({\mathbb Z} _ p\)-extensions of \(F\), the annihilator of \(X_ L\) has height at least \(2\) as \(\Lambda(\mathfrak G)\)-module. This is to say that \(X_ L\) is \(\Lambda(\mathfrak G)\)-pseudo-null.
A natural question is that if \(L/F\) is an admissible \(p\)-adic Lie extension, is \(X_ L\) pseudo–null as a \(\Lambda(\mathfrak G)\)-module?
If \(\Gamma = \text{Gal}(K/F)\), \(X_ K\) is a finitely generated torsion \(\Lambda= \Lambda(\Gamma)\)-module. It is a conjecture of Iwasawa that the \(\mu\)-invariant \(\mu(X_ K)\) is zero. This is true for \(F/{\mathbb Q}\) abelian. In case \(F={\mathbb Q}(\zeta _ p)\), \(\zeta _ p\) a primitive root of unity, the \(\lambda\)-invariant \(\lambda(X_ K)\) is positive if and only if \(p\) is an irregular prime. In particular, \(X_ K\) is often not pseudo-null as \(\Lambda\)-module, hence the reason of considering the dimension larger than or equal to \(2\).
In the paper under review the authors show that the answer to the question whether \(X_ L\) is a pseudo-null \(\Lambda(\mathfrak G)\)-module is “no” with counterexamples occurring frequently for CM-fields \(L\). In fact if \(p\) is odd, \(X_ L= X_ L^ + \oplus X_ L^ -\) as usual, and if \(G=\text{Gal}(L/K)\), it can be computed the \(\Lambda(G)\)-rank of \(X_ L^ -\) for any strongly admissible \(p\)-adic Lie extension \(L/F\) of CM-fields with \(\mu (X_ K^ -)=0\). This rank is zero if and only if \(X_ L^ -\) is \(\Lambda(G)\)-torsion, or equivalently, \(\Lambda(\mathfrak G)\) pseudo-null. In general the authors prove that \[ \text{rank} _ {\Lambda(G)}(X_ L^ -) = \lambda(X_ K^ -)-\delta + | Q_ {L/K}| \] where \(Q_ {L/K}\) is the set of prime divisors in the maximal real subfield \(K^ +\) of \(K\) that split in \(K\), ramify in \(L^ +\), and do not divide \(p\) and \(\delta\) is equal to \(1\) or \(0\) depending on whether \(F\) contains the \(p\)th roots of unity or not, respectively. In particular, \(X_ L^ -\) is not pseudo-null over \(\Lambda (\mathfrak G)\) if and only if \(\lambda( X_ K^ -)-\delta + | Q_{L/K}| \geq 1\).
The proof of this result uses Kida’s formula for \(\lambda\)-invariants in CM-extensions of cyclotomic \({\mathbb Z}_ p\)-extensions of number fields.
This result provides a negative answer to the question even in the case \(F={\mathbb Q}(\zeta _ p)\) and \(L\) is a \({\mathbb Z}_ p\)-extension of \(K\) with complex multiplication which is unramified outside \(p\). The smallest prime number \(p\) for which the \({\mathbb Z}_ p\)-rank of \(X_ K^ -\) is at least \(2\) is \(p=157\). Other examples occur for \(p= 353, 379, 467\) and \(491\).
For some cases where \(L\) is not a CM-field there exists some evidence that \(X_ L\) might be a pseudo-null \(\Lambda (\mathfrak G)\)-module. The paper contains an appendix by the second author on Iwasawa modules in procyclic extensions which is used for the new proof of Kida’s formula given in the paper which includes a weakening of the usual \(\mu=0\) assumption.

MSC:

11R23 Iwasawa theory

Citations:

Zbl 0998.11054

References:

[1] P. N. Balister and S. Howson, Note on Nakayama’s lemma for compact \Lambda -modules, Asian J. Math. 1 (1997), no. 2, 224 – 229. · Zbl 0904.16019 · doi:10.4310/AJM.1997.v1.n2.a2
[2] A. Bhave, Ph.D. thesis, TIFR, Bombay, in preparation.
[3] J. H. Coates and S. Howson, Euler characteristics and elliptic curves. II, J. Math. Soc. Japan 53 (2001), no. 1, 175 – 235. · Zbl 1046.11079 · doi:10.2969/jmsj/05310175
[4] J. Coates, P. Schneider, and R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (2003), no. 1, 73 – 108. · Zbl 1061.11060 · doi:10.1017/S1474748003000045
[5] J. Coates and R. Sujatha, Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions, preprint. · Zbl 1197.11142
[6] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-\? groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. · Zbl 0744.20002
[7] Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41 – 78. · Zbl 0839.14011
[8] Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant \?_{\?} vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377 – 395. · Zbl 0443.12001 · doi:10.2307/1971116
[9] Ralph Greenberg, Iwasawa theory — past and present, Class field theory — its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 335 – 385. · Zbl 0998.11054
[10] Yoshitaka Hachimori and Kazuo Matsuno, An analogue of Kida’s formula for the Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581 – 601. · Zbl 1081.11508
[11] Yoshitaka Hachimori and Otmar Venjakob, Completely faithful Selmer groups over Kummer extensions, Doc. Math. Extra Vol. (2003), 443 – 478. Kazuya Kato’s fiftieth birthday. · Zbl 1117.14046
[12] Michael Harris, \?-adic representations arising from descent on abelian varieties, Compositio Math. 39 (1979), no. 2, 177 – 245. · Zbl 0417.14034
[13] Michael Harris, Correction to: ”\?-adic representations arising from descent on abelian varieties” [Compositio Math. 39 (1979), no. 2, 177 – 245; MR0546966 (80j:14035)], Compositio Math. 121 (2000), no. 1, 105 – 108. · Zbl 1060.14524 · doi:10.1023/A:1001730616194
[14] S. Howson, Iwasawa theory of elliptic curves for \(p\)-adic Lie extensions, Ph.D. thesis, University of Cambridge, 1998.
[15] Susan Howson, Euler characteristics as invariants of Iwasawa modules, Proc. London Math. Soc. (3) 85 (2002), no. 3, 634 – 658. · Zbl 1036.11053 · doi:10.1112/S0024611502013680
[16] Yasutaka Ihara, Masanobu Kaneko, and Atsushi Yukinari, On some properties of the universal power series for Jacobi sums, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 65 – 86. · Zbl 0642.12012
[17] Kenkichi Iwasawa, Riemann-Hurwitz formula and \?-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (1981), no. 2, 263 – 288. · Zbl 0468.12004 · doi:10.2748/tmj/1178229453
[18] Kenkichi Iwasawa, On cohomology groups of units for \?_{\?}-extensions, Amer. J. Math. 105 (1983), no. 1, 189 – 200. · Zbl 0525.12009 · doi:10.2307/2374385
[19] Uwe Jannsen, Iwasawa modules up to isomorphism, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 171 – 207. · Zbl 0732.11061
[20] Yûji Kida, \?-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), no. 4, 519 – 528. · Zbl 0455.12007 · doi:10.1016/0022-314X(80)90042-6
[21] L. Kuz’min, Some duality theorems for cyclotomic \(\Gamma\)-extensions of algebraic number fields of CM type, Math. USSR-Izv. 14 (1980), 441-498. · Zbl 0448.12007
[22] S. Lang, Cyclotomic fields I and II, Combined 2nd ed., Springer-Verlag, New York, 1990. · Zbl 0704.11038
[23] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. · Zbl 0948.11001
[24] Masami Ohta, On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan 45 (1993), no. 1, 131 – 183. · Zbl 0820.14014 · doi:10.2969/jmsj/04510131
[25] Ravi Ramakrishna, Deforming an even representation, Invent. Math. 132 (1998), no. 3, 563 – 580. · Zbl 0936.11036 · doi:10.1007/s002220050233
[26] R. Sharifi, Massey products and ideal class groups, preprint, arXiv:math.NT/ 0308165. · Zbl 1163.11077
[27] R. Sharifi, Iwasawa theory and the Eisenstein ideal, Preprint, arXiv:math.NT/ 0501236. · Zbl 1131.11068
[28] Otmar Venjakob, On the structure theory of the Iwasawa algebra of a \?-adic Lie group, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271 – 311. · Zbl 1049.16016 · doi:10.1007/s100970100038
[29] Otmar Venjakob, A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math. 559 (2003), 153 – 191. With an appendix by Denis Vogel. · Zbl 1051.11056 · doi:10.1515/crll.2003.047
[30] Otmar Venjakob, On the Iwasawa theory of \?-adic Lie extensions, Compositio Math. 138 (2003), no. 1, 1 – 54. · Zbl 1039.11073 · doi:10.1023/A:1025413030203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.