×

Proof of the main conjecture of noncommutative Iwasawa theory for totally real number fields in certain cases. (English) Zbl 1242.11084

The article under review concerns the non-commutative Iwasawa main conjecture over totally real fields for the Tate motive. Historically, the first version of this main conjecture was stated for the cyclotomic \(\mathbb{Z}_p\)-extension of a totally real number field and proved by A. Wiles [“The Iwasawa conjecture for totally real fields”, Ann. Math. 131, No. 3, 493–540 (1990; Zbl 0719.11071)]. Based on recent work [J. H. Coates et al., Publ. Math., Inst. Hautes Étud. Sci. 101, 163–208 (2005; Zbl 1108.11081)] and [T. Fukaya and K. Kato, “A formulation of conjectures on \(p\)-adic zeta functions in non-commutative Iwasawa theory”, Proceedings of the St. Petersburg Mathematical Society, N. N. Uraltseva (ed.), Vol. 12, Transl., Ser. 2. Am. Math. Soc. 219, 1–85 (2006; Zbl 1238.11105)] its formulation has been extended (also for more general types of motives) to admissible \(p\)-adic Lie-extensions \(k_\infty\) of a number field \(k\) (i.e.\(k_\infty/k\) is an (infinite) Galois extension, in which at most finitely many places of \(k\) ramify, containing the cyclotomic \(\mathbb{Z}_p\)-extension of \(k\), and whose Galois group is a \(p\)-adic Lie group).
At the moment of the reviewing the article is already outdated. Indeed, it is a precursor of the article [”The main conjecture of Iwasawa theory for totally real fields”, preprint, arXiv:1008.0142] by the same author. While the paper under discussion only proves the conjecture in special cases (concerning the type of admissible \(p\)-adic Lie extensions), the recent one contains a full proof of it for all admissible \(p\)-adic Lie extensions. Practically simultaneously, J. Ritter and A. Weiss [J. Am. Math. Soc. 24, No. 4, 1015–1050 (2011; Zbl 1228.11165)] have given a proof of the same conjecture for one-dimensional \(p\)-adic Lie-extensions, which can be combined with Burns’ insight in [D. Burns, “On main conjectures in non-commutative Iwasawa theory and related conjectures”, Preprint (2011)] based on Fukaya and Kato’s result Prop.1.5.1 in [Zbl 1238.11105] on the compatibility of \(K_1\) with certain projective limits to obtain the conjecture for general (admissible) \(p\)-adic Lie-extensions. See also the reviewer’s work [“On the work of Ritter and Weiss in comparison with Kakde’s approach,” preprint, arXiv:1110.6366] for a survey and comparison. In all cases the vanishing of Iwasawa’s \(\mu\)-invariant has to be assumed. Various other special cases had been known by the work of (in alphabetical order) [T. Hara, J. Number Theory 130, No. 4, 1068–1097 (2010; Zbl 1196.11148); Duke Math. J. 158, No. 2, 247–305 (2011; Zbl 1238.11100)], K. Kato [Iwasawa theory of totally real fields for Galois extensions of Heisenberg type, preprint (2007) per bibl.], J. Ritter and A. Weiss e.g., [“Non-abelian pseudomeasures and congruences between abelian Iwasa \(L\)-functions”, Pure Appl. Math. Q. 4, No. 4, 1085–1106 (2008; Zbl 1193.11104)].
In his article Kakde first reviews the commutative case of the main conjecture which is a consequence of Wiles’ work mentioned above. Then he explains the strategy of Burns and Kato how to derive the validity of the non-commutative main conjecture (for extensions of dimension \(1\)) from the validity of the commutative main conjecture plus the verification of new types of congruences between Serre’s \(p\)-adic pseudomeasures associated to various intermediate abelian \(p\)-adic Lie extensions. These congruences arise from an purely algebraic determination of the first algebraic \(K\)-group of the non-commutative Iwasawa algebra (and its canonical localisation) in terms of commutative Iwasawa algebras; this part involves technically the integral group logarithm of (independently) B. Oliver and M. Taylor. In order to check the congruences the \(q\)-expansion principle of Deligne and Ribet is used.

MSC:

11R23 Iwasawa theory
11R42 Zeta functions and \(L\)-functions of number fields
11R80 Totally real fields
19B28 \(K_1\) of group rings and orders

References:

[1] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501 – 570. · Zbl 1052.11077
[2] Pierrette Cassou-Noguès, \?-adic \?-functions for totally real number field, Proceedings of the Conference on \?-adic Analysis (Nijmegen, 1978), Report, vol. 7806, Katholieke Univ., Nijmegen, 1978, pp. 24 – 37. Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta \?-adiques, Invent. Math. 51 (1979), no. 1, 29 – 59 (French). · Zbl 0408.12015 · doi:10.1007/BF01389911
[3] John Coates, \?-adic \?-functions and Iwasawa’s theory, Algebraic number fields: \?-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 269 – 353.
[4] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, The \( {GL_2}\) main conjecture for elliptic curves without complex multiplication, Publ. Math. IHES (2005). · Zbl 1108.11081
[5] J. Coates and S. Lichtenbaum, On \?-adic zeta functions, Ann. of Math. (2) 98 (1973), 498 – 550. · Zbl 0279.12005 · doi:10.2307/1970916
[6] J. Coates and W. Sinnott, On \?-adic \?-functions over real quadratic fields, Invent. Math. 25 (1974), 253 – 279. · Zbl 0305.12008 · doi:10.1007/BF01389730
[7] J. Coates and R. Sujatha, Cyclotomic fields and zeta values, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. · Zbl 1100.11002
[8] Pierre Deligne and Kenneth A. Ribet, Values of abelian \?-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227 – 286. · Zbl 0434.12009 · doi:10.1007/BF01453237
[9] Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant \?_{\?} vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377 – 395. · Zbl 0443.12001 · doi:10.2307/1971116
[10] Jean-Marc Fontaine and Bernadette Perrin-Riou, Autour des conjectures de Bloch et Kato. III. Le cas général, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 7, 421 – 428 (French, with English summary). · Zbl 0758.14001
[11] Takako Fukaya and Kazuya Kato, A formulation of conjectures on \?-adic zeta functions in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society. Vol. XII, Amer. Math. Soc. Transl. Ser. 2, vol. 219, Amer. Math. Soc., Providence, RI, 2006, pp. 1 – 85. · Zbl 1238.11105 · doi:10.1090/trans2/219/01
[12] Ralph Greenberg, On \?-adic Artin \?-functions, Nagoya Math. J. 89 (1983), 77 – 87. · Zbl 0513.12012
[13] T. Hara, Iwasawa theory of totally real fields for certain non-commutative \( p\)-extensions, Master’s thesis, University of Tokyo, 2008.
[14] A. Huber and G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 149 – 162. · Zbl 1020.11067
[15] Wells Johnson, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113 – 120. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. · Zbl 0302.10020
[16] Kazuya Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil \?-functions via \?_{\?\?}. I, Arithmetic algebraic geometry (Trento, 1991) Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, pp. 50 – 163. · Zbl 0815.11051 · doi:10.1007/BFb0084729
[17] Kazuya Kato, \?\(_{1}\) of some non-commutative completed group rings, \?-Theory 34 (2005), no. 2, 99 – 140. · Zbl 1080.19002 · doi:10.1007/s10977-005-3935-3
[18] Kazuya Kato, Iwasawa theory of totally real fields for Galois extensions of Heisenberg type, Very preliminary version, 2006.
[19] Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. · Zbl 0704.11038
[20] B. Mazur and A. Wiles, Class fields of abelian extensions of \?, Invent. Math. 76 (1984), no. 2, 179 – 330. · Zbl 0545.12005 · doi:10.1007/BF01388599
[21] Robert Oliver, Whitehead groups of finite groups, London Mathematical Society Lecture Note Series, vol. 132, Cambridge University Press, Cambridge, 1988. · Zbl 0636.18001
[22] Robert Oliver and Laurence R. Taylor, Logarithmic descriptions of Whitehead groups and class groups for \?-groups, Mem. Amer. Math. Soc. 76 (1988), no. 392, vi+97. · Zbl 0668.16013 · doi:10.1090/memo/0392
[23] Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory. II, Indag. Math. (N.S.) 15 (2004), no. 4, 549 – 572. · Zbl 1142.11369 · doi:10.1016/S0019-3577(04)80018-1
[24] Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory. III, Math. Ann. 336 (2006), no. 1, 27 – 49. · Zbl 1154.11038 · doi:10.1007/s00208-006-0773-4
[25] Jürgen Ritter and Alfred Weiss, Congruences between abelian pseudomeasures, Math. Res. Lett. 15 (2008), no. 4, 715 – 725. · Zbl 1158.11047 · doi:10.4310/MRL.2008.v15.n4.a10
[26] Jean-Pierre Serre, Formes modulaires et fonctions zêta \?-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191 – 268. Lecture Notes in Math., Vol. 350 (French). J.-P. Serre, Correction to: ”Formes modulaires et fonctions zêta \?-adiques” (Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191 – 268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 149 – 150. Lecture Notes in Math., Vol. 476.
[27] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. · Zbl 0355.20006
[28] Jean-Pierre Serre, Sur le résidu de la fonction zêta \?-adique d’un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A183 – A188 (French, with English summary). · Zbl 0393.12026
[29] Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393 – 417. · Zbl 0349.12007
[30] L. N. Vaseršteĭn, On the stabilization of the general linear group over a ring, Math. USSR-Sb. 8 (1969), 383 – 400.
[31] L. N. Vaserstein, On the Whitehead determinant for semi-local rings, J. Algebra 283 (2005), no. 2, 690 – 699. · Zbl 1059.19002 · doi:10.1016/j.jalgebra.2004.09.016
[32] C. Weibel, An introduction to algebraic \( {K}\)-theory (online), 2007.
[33] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493 – 540. · Zbl 0719.11071 · doi:10.2307/1971468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.