×

A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. (English) Zbl 1187.65121

The aim of this paper is to study the residual-type a posteriori error estimates of the finite volume element (FVE) method for a quasi-linear elliptic problem of nonmonotone type. The authors give an error representation of the FVE method, which reveals the relationship between the FVE and the finite element method and get computable upper and lower bounds on the error in the \(H^1\)-norm. The paper concludes with supporting numerical experiments.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
35J62 Quasilinear elliptic equations
Full Text: DOI

References:

[1] Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000) · Zbl 1008.65076
[2] Arnold D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) · Zbl 0482.65060 · doi:10.1137/0719052
[3] Babuska I., Strouboulis T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)
[4] Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH-Zürich. Birkhäuser, Basel (2003) · Zbl 1020.65058
[5] Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987) · Zbl 0634.65105 · doi:10.1137/0724050
[6] Bergam A., Mghazli Z., Verfürth R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95, 599–624 (2003) · Zbl 1033.65095 · doi:10.1007/s00211-003-0460-2
[7] Bi C.: Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods PDEs 23, 220–233 (2007) · Zbl 1119.65105
[8] Bi C., Ginting V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007) · Zbl 1134.65077 · doi:10.1007/s00211-007-0115-9
[9] Brenner S., Scott R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994) · Zbl 0804.65101
[10] Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991) · Zbl 0731.65093 · doi:10.1007/BF01385651
[11] Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005) · Zbl 1084.65112 · doi:10.1137/S0036142903425422
[12] Chatzipantelidis P.: Finite volume methods for elliptic PDE’s: a new approach. Math. Model. Numer. Anal. 36, 307–324 (2002) · Zbl 1041.65087 · doi:10.1051/m2an:2002014
[13] Chatzipantelidis P., Ginting V., Lazarov R.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005) · Zbl 1164.65494 · doi:10.1002/nla.439
[14] Chou S.H., Li Q.: Error estimates in L 2, H 1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (2000) · Zbl 0936.65127
[15] Chou S.H., Kwak D.Y.: Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90, 459–486 (2002) · Zbl 0995.65127 · doi:10.1007/s002110100288
[16] Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[17] Douglas J. Jr, Dupont T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975) · Zbl 0306.65072 · doi:10.1090/S0025-5718-1975-0431747-2
[18] Ewing R.E., Lin T., Lin Y.P.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002) · Zbl 1036.65084 · doi:10.1137/S0036142900368873
[19] Gudi T., Pani A.K.: Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45, 163–192 (2007) · Zbl 1140.65082 · doi:10.1137/050643362
[20] Hlaváček I., Křížek M.: On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions. Stability Appl. Anal. Contin. Media 3, 85–97 (1993)
[21] Hlavek I., Křížek M., Malý J.: On Galerkin approximations of a quasi-linear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184, 168–189 (1994) · Zbl 0802.65113 · doi:10.1006/jmaa.1994.1192
[22] Huang J., Xi S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35, 1762–1774 (1998) · Zbl 0913.65097 · doi:10.1137/S0036142994264699
[23] Lazarov R., Tomov S.: A posteriori error estimates for finite volume approximations of convection-diffusion-reaction equations. Comput. Geosci. 6, 483–503 (2002) · Zbl 1014.65116 · doi:10.1023/A:1021247300362
[24] Lazarov R., Tomov S.: Adaptive finite volume element method for convection-diffusion-reaction problems in 3d. In: Minev, Y.W.P., Lin, Y. (eds) Scientific Computing and Application., pp. 91–106. Nova Science Publishing House, Huntington (2001) · Zbl 1047.76061
[25] Li R., Chen Z., Wei W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000) · Zbl 0940.65125
[26] Lin Q., Zhu Q.: The Preprocessing and Postprocessing for the Finite Element Methods. Shanghai Scientific and Technical Publishers, Shanghai (1994)
[27] Liu L., Křížek M., Neittaanmäki P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 41, 467–478 (1996) · Zbl 0870.65096
[28] Liu L., Liu T., Křížek M., Lin T., Zhang S.H.: Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type. SIAM J. Numer. Anal. 42, 1729–1744 (2004) · Zbl 1089.65118 · doi:10.1137/S0036142903428402
[29] Milner F.A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 1–22 (1985) · Zbl 0567.65079 · doi:10.1090/S0025-5718-1985-0771027-5
[30] Mishev I.D.: Finite volume element methods for non-definite problems. Numer. Math. 83, 161–175 (1999) · Zbl 0938.65131 · doi:10.1007/s002110050443
[31] Neittaanmäki P., Repin S.: Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York (2004) · Zbl 1076.65093
[32] Rannacher R., Scott R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 15, 1–22 (1982) · Zbl 0483.65007
[33] Schatz A.H., Thomée V., Wahlbin L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980) · doi:10.1002/cpa.3160330305
[34] Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary condition. Math. Comput. 54, 483–493 (1990) · Zbl 0696.65007 · doi:10.1090/S0025-5718-1990-1011446-7
[35] Verfrth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)
[36] Wu H., Li R.: Error estimates for finite volume element methods for general second order elliptic problem. Numer. Methods PDEs 19, 693–708 (2003) · Zbl 1040.65091
[37] Xu J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996) · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[38] Xu, J., Zhu, Y., Zou, Q.: New adaptive finite volume methods and convergence analysis. Numer. Math. (submitted). Available online at http://www.math.psu.edu/xu/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.